Volume 7, Issue 1 (3-2018)                   3dj 2018, 7(1): 1-6 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jalalian E, Shalchi M, Hajian-Tilaki A, Aghajani Nargesi R. Adhesion of Streptococcus Mutans to Zirconia, Enamel, IPS Empress II, Noble Alloy and Base-metal: An In-Vitro Comparative Study. 3dj 2018; 7 (1) :1-6
URL: http://3dj.gums.ac.ir/article-1-302-en.html
1- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
2- Assistant Professor, Department of Orthodontics, Faculty of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
3- Postgraduate Student of Orthodontics, Department of Orthodontics, Faculty of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
4- Assistant Professor, Department of ProsthodonticAssistant Professor, Department of Prosthodontics, Faculty of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.s, Faculty of Dentistry, Guilan University of Medical Sciences, Rasht, Iran. , arefehhajian69@gmail.com
Abstract:   (2529 Views)
Introduction: With increased usage of restorative materials, dentists are more concerned in choosing a suitable material with lower adhesion of pathogens like streptococci. This comparative in vitro study aimed to compare adhesion of streptococcus mutans to zirconia, IPS Empress II, noble alloy, and base-metal.
Materials and Methods: In this descriptive study, 50 specimens (5 mm diameter disk with 1 mm thickness) were prepared (10 for each material; zirconia, enamel, IPS Empress II, noble alloy, and base-metal). Enamel was used as reference. The specimens were covered by artificial saliva and bacterial suspension. Scanning electron microscope and culturing the specimens in blood agar was used for evaluating bacterial adhesion. The collected data were analyzed by ANOVA and post-hoc Tukey test.
Results: There was a significant difference in adhesion among study groups (P<0.001). The least amount of adhesion was observed in zirconia group (28±6.32), followed by enamel (48.2±8.4), IPS Empress II (50.6±6.99), noble (76±4.9) and base-metal (106.4±9.44). There was no significant difference in surface roughness among study groups.
Conclusion: Zirconia showed the lowest bacterial adhesion in comparison to other restorative materials. Therefore, the findings of the present study highlight the fact that restorative ceramics, including zirconia is a better choice in patients with poor oral hygiene and those susceptible to periodontal disease.
Full-Text [PDF 858 kb]   (642 Downloads) |   |   Full-Text (HTML)  (783 Views)  
Type of Study: Original article | Subject: Pathology
Received: 2017/10/10 | Accepted: 2018/01/25 | Published: 2018/03/1

1. Dankert J. Biomedical polymers: bacterial adhesion, colonization and infection. CRC Critical Reviews in Biocompatibility. 1986; 2:219-301.
2. Hori K, Matsumoto S. Bacterial adhesion: From mechanism to control. Journal of Biomechanical Engineering. 2010; 48(3):424-34. [DOI:10.1016/j.bej.2009.11.014] [DOI:10.1016/j.bej.2009.11.014]
3. Hannig M. Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. European Journal of Oral Sciences. 1997; 105(5 Pt 1):422-33. [DOI:10.1111/j.1600-0722.1997.tb02139.x] [PMID] [DOI:10.1111/j.1600-0722.1997.tb02139.x]
4. Hannig M. Transmission electron microscopy of early plaque formation on dental materials in vivo. European Journal of Oral Sciences. 1999; 107(1):55-64. [DOI:10.1046/j.0909-8836.1999.eos107109.x] [PMID] [DOI:10.1046/j.0909-8836.1999.eos107109.x]
5. Guggenheim B, Giertsen E, Schüpbach P, Shapiro S. Validation of an in vitro biofilm model of supragingival plaque. Journal of Dental Research. 2001; 80(1):363-70. [DOI:10.1177/00220345010800011201] [PMID] [DOI:10.1177/00220345010800011201]
6. Dezelic T, Schmidlin PR. Multi-species biofilm formation on dental materials and an adhesive patch. Oral Health & Preventive Dentistry. 2009; 7(1):47-53. [PMID] [PMID]
7. Carlen A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001; 22(5):481-7. [DOI:10.1016/S0142-9612(00)00204-0] [DOI:10.1016/S0142-9612(00)00204-0]
8. Carlen A, Börjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Research. 1998; 32(6):447-55 [DOI:10.1159/000016486] [PMID] [DOI:10.1159/000016486]
9. Suljak J, Reid G, Wood S, McConnell R, Van der Mei H, Busscher H. Bacterial adhesion to dental amalgam and three resin composites. Journal of Dentistry. 1995; 23(3):171-6. [DOI:10.1016/0300-5712(95)93575-M] [DOI:10.1016/0300-5712(95)93575-M]
10. Meier R, Hauser Gerspach I, Lüthy H, Meyer J. Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro. Journal of Materials Science: Materials in Medicine. 2008; 19(10):3249-53. [DOI:10.1007/s10856-008-3457-7] [PMID] [DOI:10.1007/s10856-008-3457-7]
11. Prati C, Fava F, Di Gioia D, Selighini M, Pashley DH. Antibacterial effectiveness of dentin bonding systems. Dental Materials. 1993; 9(6):338-43. [DOI:10.1016/0109-5641(93)90053-S] [DOI:10.1016/0109-5641(93)90053-S]
12. Palenik C, Behnen M, Setcos J, Miller C. Inhibition of microbial adherence and growth by various glass ionomers in vitro. Dental Materials. 1992; 8(1):16-20. [DOI:10.1016/0109-5641(92)90047-G] [DOI:10.1016/0109-5641(92)90047-G]
13. Satou J, Fukunaga A, Satou N, Shintani H, Okuda K. Streptococcal adherence on various restorative materials. Dental Materials. 1988; 67(3):588-91. [DOI:10.1177/00220345880670031301] [PMID] [DOI:10.1177/00220345880670031301]
14. Lee BH, Do Kim Y, Shin JH, Hwan Lee K. Surface modification by alkali and heat treatments in titanium alloys. Journal of Biomedical Materials Research. 2002; 61(3):466-73. [DOI:10.1002/jbm.10190] [PMID] [DOI:10.1002/jbm.10190]
15. Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. Journal of the American Dental Association. 2008; 139(Suppl 4):8S-13S. [DOI:10.14219/jada.archive.2008.0361] [PMID] [DOI:10.14219/jada.archive.2008.0361]
16. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, Van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clinical Oral Implants Research. 1996; 7(3):201-11. [DOI:10.1034/j.1600-0501.1996.070302.x] [PMID] [DOI:10.1034/j.1600-0501.1996.070302.x]
17. Quirynen M, Bollen C. The influence of surface roughness and surface‐free energy on supra‐and subgingival plaque formation in man: A review of the literature. Journal of Clinical Periodontology. 1995; 22(1):1-14. [DOI:10.1111/j.1600-051X.1995.tb01765.x] [PMID] [DOI:10.1111/j.1600-051X.1995.tb01765.x]
18. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clinical Oral Implants Research. 2006; 17(Suppl 2):68-81. [DOI:10.1111/j.1600-0501.2006.01353.x] [PMID] [DOI:10.1111/j.1600-0501.2006.01353.x]
19. Banas J, Vickerman M. Glucan-binding proteins of the oral streptococci. Critical Reviews in Oral Biology & Medicine. 2003; 14(2):89-99. [DOI:10.1177/154411130301400203] [PMID] [DOI:10.1177/154411130301400203]
20. Egawa M, Miura T, Kato T, Saito A, Yoshinari M. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces. Dental Materials Journal. 2013; 32(1):101-6. [DOI:10.4012/dmj.2012-156] [PMID] [DOI:10.4012/dmj.2012-156]
21. Rosentritt M, Behr M, Bürgers R, Feilzer AJ, Hahnel S. In vitro adherence of oral streptococci to zirconia core and veneering glass‐ceramics. Journal of Biomedical Materials Research Part B. 2009; 91(1):257-63. [DOI:10.1002/jbm.b.31397] [PMID] [DOI:10.1002/jbm.b.31397]
22. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study. Journal of Periodontology. 2004; 75(2):292-6. [DOI:10.1902/jop.2004.75.2.292] [PMID] [DOI:10.1902/jop.2004.75.2.292]
23. Kantorski KZ, Scotti R, Valandro LF, Bottino MA, Koga Ito CY, Jorge AO. Adherence of streptococcus mutans to uncoated and saliva-coated glass-ceramics and composites. General Dentistry. 2008; 56(7):740-7. [PMID] [PMID]
24. Bremer F, Grade S, Kohorst P, Stiesch M. In vivo biofilm formation on different dental ceramics. Quintessence Publishing: Quintessence International. 2011; 42(7):565-74.
25. Sardin S, Morrier JJ, Benay G, Barsotti O. In vitro streptococcal adherence on prosthetic and implant materials. Interactions with physicochemical surface properties. Journal of Oral Rehabilitation. 2004; 31(2):140-8. [DOI:10.1046/j.0305-182X.2003.01136.x] [PMID] [DOI:10.1046/j.0305-182X.2003.01136.x]
26. Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. Journal of Materials Science: Materials in Medicine. 2000; 11(10):637-42. [DOI:10.1023/A:1008913915399] [DOI:10.1023/A:1008913915399]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Dentomaxillofacial

Designed & Developed by : Yektaweb