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ABSTRACT

m This narrative review synthesises 2022-2025 evidence on deep learning for dental imaging,
focusing on diagnostic accuracy (precision, recall, F1), segmentation quality (Dice), and reporting of
inference speed. Representative model families are also situated—YOLO one-stage detectors,

ﬁ;ﬁ,‘j@fﬁz‘? :;% 2025 attention-augmented U-Nets, 3-D CNNs, and Segment Anything Model-derived hybrids (“SAM-
Accepted: 22 Jun 2025 derived” = architectures adapted from Segment Anything for dental images)—within current clinical
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workflows. From database searches of PubMed, Scopus and IEEE Xplore (January 2022 — May 2025),
342 records were retrieved; after deduplication and screening, 17 primary studies were included.
Detection/classification studies (n = 10) reported overall F1 values up to 0.97 (highest in peri-implantitis
detection; internal test; n = 100 from an 800-image dataset); the lowest externally evaluated detector
reported ~0.53 F1 on CBCT periapicals (external site; n = 195 scans). YOLOV8 achieved F1 =~ 0.82 on
bitewings in an internal test split (n = 150). Segmentation studies (n = 8) reported Dice ~0.49-0.98:

Keywords: Attention U-Net reached 0.963 for single-tooth CBCT on an internal test (n = 9 scans). A multi-structure
* Artificial intelligence Swin-UNETR reported Dice 0.936-0.965 for tooth/sinus/bone/canal on an external set (n = 55 scans).
* Deep learning A SAM-derived model (Tooth-ASAM) achieved 0.909-0.975 Dice across mixed public/private

* Machine learning

* Dental Radiography datasets. While three studies included external-site validation, none were prospective or randomised.

Key priorities for clinical translation were identified: consistent speed reporting (batch-1 latency/FPS
on named hardware), metric harmonisation (Dice for segmentation; F1 at loU = 0.5 for detection),
dockerised inference pipelines, and multi-centre external testing followed by prospective trials to
quantify clinical impact.

(Dice) 0.93 while highlighting heterogeneous metrics and

1. Introduction a lack of head-to-head model comparisons (2). These

anual interpretation of dental images— gaps motivate an updated, task-level synthesis. To orient

including bitewing, periapical, panoramic the reader, we highlight three developments since

and cone-beam CT (CBCT) views— January 2022 that shape current performance and

remains labour-intensive and suffers from reporting:

inter-observer variability. For example,

early inter-proximal caries on bitewings 1. Mature one-stage detectors. The You Only Look
are subtle in contrast, periapicals and panoramics demand Once (YOLO) family has evolved from v5 through v8.
compensation for geometric distortion, and a single Bayati et al. reported YOLOV8 achieved F1 (F1-Score)
CBCT scan may contain > 400 axial slices, requiring 10 0.82 for inter-proximal caries on bitewings (3). Lee et al.
minutes or more of scrolling in a busy clinic. Two recent reported YOLOV7 reached F1 0.97 for peri-implantitis
systematic reviews underscored both the promise and detection (4). A benchmarking study across YOLO variants
fragmentation of current evidence. Carvalho et al. pooled (V5-v9c) described “real-time” operation but did not
25 studies of Al caries detection in bitewings and disclose batch-1 latency or frame-rate figures; nevertheless,

precision—recall trade-offs approached those of two-stage
detectors such as Faster Region-Based Convolutional
Neural Network (R-CNN) in several tasks (5).

reported pooled sensitivity 0.87 and specificity 0.91 but
noted small test sets and scarce external validation (1).
Kot et al. synthesised 18 CBCT tooth-segmentation
papers and found pooled Dice similarity coefficient
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2. Task-specific segmentation networks. Attention-
augmented U-Nets and 3-D CNN architectures
consistently produce high-fidelity CBCT masks. Liu et
al. used a Swin-U-Net Transformer (UNETR) backbone
to segment tooth, sinus, bone and mandibular canal
simultaneously, reporting Dice 0.94-0.97 across
structures (6). Chen et al. integrated an Attention U-Net
with V-Net to achieve Dice 0.963 for single-tooth CBCT
segmentation and root-canal measurement (7). Palkovics
et al. employed a multi-phase 3-D Segmentation Residual
Network (SegResNet) for full-arch CBCT, reaching Dice
0.965 + 0.010 on periodontal bone topography (8). Hsu
et al. improved Dice to 0.96 by majority-voting a “3.5 D”
U-Net ensemble (9).

3. Foundation-model  adaptation.  Transformer
hybrids have entered dentistry via the Segment Anything
Model (SAM). Here and throughout, we use “SAM-
derived” to denote models adapted from SAM backbones
(e.g., promptable/finetuned variants), distinct from
classical U-Nets or pure ViT decoders. Wang et al.
adapted SAM to multimodal tooth images (CBCT,
panoramics, intra-oral photos), achieving Dice 0.909—
0.975 while using = 40 % of the manual labels required
by traditional CNNs (10). Schneider et al. compared
CNN, transformer and hybrid backbones across three
dental segmentation tasks; hybrids retained CNN-level
accuracy but demanded more GPU memory —still
acceptable for back-office batch processing (11). These
label-efficient, prompt-based approaches foreshadow
task-agnostic Al workflows in dentistry.

Since January 2022, 17 primary studies have reported
new dental Al models with transparent metrics and, in
three cases, true external-site validation. Yet no narrative

Table 1. List of abbreviations and definitions used in the review
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so far has compared YOLOV8 speed with Shifted-
Window U-Net Transformer (Swin-UNETR) Dice or
examined how SAM-derived models slot into existing
clinical pathways. Moreover, federated learning for tooth
segmentation on panoramics has recently outperformed
local and central training without sharing raw data (12),
and Al-based metal-artifact reduction is beginning to
improve CBCT image quality upstream of segmentation
(13). Incorporating these 2022-2025 advances provides a
more realistic picture of what clinicians can expect
today—and what gaps remain.

Consequently, the present narrative review:

o (i) collates 17 peer-reviewed primary studies (2022-
2025) covering  detection, segmentation  and
classification;

o (ii) quantifies pooled accuracy (precision, recall, F1,
Dice) and runtime;

o (iii) discusses clinical readiness, remaining challenges
and research priorities—including federated learning,
artifact-aware networks and multi-centre prospective
trials.

By triangulating these strands, the review aims to
provide clinicians, researchers and developers with an
up-to-date, task-level map of deep-learning performance
in dental imaging and a clear agenda for bringing Al tools
from bench to chair-side.

For clarity, all acronyms and technical terms used in this
review (e.g., CBCT, PR, mloU, Dice) are defined in the
Abbreviations table (Table 1), and each is expanded at
first use.

Abbreviation Definition

Al Artificial intelligence

AUC Area under the ROC curve

BW Bitewing radiograph

CBCT Cone-beam computed tomography

CNN Convolutional neural network

CV Cross-validation (e.g., 5-fold)

Dice Dice similarity coefficient (pixel-wise F1 for segmentation)
F1-score Harmonic mean of precision and recall

FPS Frames per second

IoU Intersection-over-Union

mloU Mean Intersection-over-Union

MPA Mean pixel accuracy

PA Periapical radiograph

PR Panoramic radiograph

RGB Red-Green-Blue (photograph)

ROIL Region of interest

SAM Segment Anything Model

SegResNet Segmentation Residual Network
Swin-UNETR Shifted-Window Transformer U-Net (UNETR)
TFLOPS Tera floating-point operations per second
U-Net Encoder-decoder segmentation network

ViT Vision Transformer

YOLO You Only Look Once (one-stage detector)
MFPT-Net Multi-task Fine-Grained Progressive Training Network
MICCAI Medical Image Computing and Computer-Assisted Intervention (challenge context)

I
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2. Materials and Methods

This is a narrative review with systematic elements
(database searches, dual independent screening,
agreement assessment). Screening counts are reported in
text; no flow figure is provided.

We searched PubMed, Scopus and IEEE Xplore for
English-language records published from 1 January 2022
to 31 May 2025. The Boolean string combined core terms
for deep learning ("deep learning” OR "convolutional
neural network” OR "transformer"), model names
("YOLO" OR "U-Net"), and imaging keywords ("dental
imaging" OR "radiograph” OR "CBCT"). A hand search
of reference lists completed the strategy.

We included peer-reviewed studies that (i) analysed
human dental images using a deep-learning model and
(ii) reported at least one quantitative performance metric
from the set below.
To ensure a consistent comparison, only metrics that are
widely reported and clinically meaningful were
extracted.

(for TP = true positives, FP = false positives, FN = false
negatives, TN = true negatives, P = prediction mask, G =
ground-truth mask)

e Precision (positive-predictive value): TP /(TP + FP)
— indicates how often a positive call is correct, limiting
false-positive interruptions during chair-side work.

eRecall (sensitivity): TP /(TP + FN) — captures how
many true lesions are detected; missed disease directly
affects patient care.

eF1-score (harmonic mean of precision and recall): 2
x TP /(2 x TP + FP + FN) — the default summary number
in object-detection studies because it balances FP and FN.

e Dice similarity coefficient (pixel-wise F1): 2 x |P N
G| !/ (P| + |G]) — the dominant overlap metric for
segmentation.

e Intersection-over-Union (loU, Jaccard index): [P N
G|/ |P U G| — a stricter overlap measure than Dice; its
class-averaged form is mean loU (mloU).

e Mean pixel accuracy (MPA): average over classes of
TPy / (TP + FNy) — occasionally reported in enamel-crack
work as a complement to mloU.

e Specificity: TN/ (TN + FP) — relevant for fracture or
bone-loss screening where over-referral must be
minimised.

eAccuracy: (TP + TN) / (all) — retained for implant-
brand classifiers, though less informative in imbalanced
datasets.

Precision—recall metrics were extracted and reported for
all detection studies. If a study did not report an F1-score,
it was calculated from the provided confusion matrix or
the reported precision and recall values:

2 X Precision X Recall
1 —

Precision + Recall

I
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The derived value was then included in the pooled
statistics and marked in the tables as estimated.

For segmentation studies, we extracted whichever
overlap metric was provided—Dice or mean Intersection-
over-Union (mloU) or pixel-wise Fl—rather than
pooling them together.
To enable pooled summaries, we harmonized
segmentation metrics as follows. For pixel/voxel-wise
segmentation, pixel-wise F1 and Dice are mathematically
equivalent; therefore, when a study reported pixel-wise
F1 we treated it as Dice with the same value. We did not
convert object level detection F1-score to Dice.

Studies reporting Dice are summarized by their Dice
values, and those reporting mloU by their mloU values.
When only mloU was available but a Dice approximation
was useful for interpretation, we calculated

2 x {mloU}
1 + {mloU}

which holds exactly for binary masks on the same
region but serves only as an approximation when mloU
is averaged across multiple classes. The derived value
was then included in the pooled statistics and marked in
the tables as estimated.

Dice{est} =

Simple, unweighted means were reported to avoid over-
representing  large, single-site  datasets  within
heterogeneous tasks. We also recorded split design
(train/val/test counts; k-fold cross-validation) and
whether evaluation was internal, external-site, or
matched-control.

Claims of 'real-time' performance made without specific
timings or hardware were recorded qualitatively; latency
was not estimated in these cases.

We retrieved 342 records (PubMed 188, Scopus 122,
IEEE Xplore 32). After removing 62 duplicates, 280
titles/abstracts were screened; 255 were excluded as off-
topic or reviews. We assessed 25 full texts, excluding 8
(five lacked quantitative metrics; three were non-
human/ex-vivo), leaving 17 primary studies for inclusion.
Two reviewers screened independently; pilot k = 0.89
and overall x = 0.92 with consensus resolution of
discrepancies (Table 2).

Table 2. A summary description of method steps

Description

PubMed, Scopus, IEEE Xplore
(English; 1 Jan 2022 - 31 May 2025)
“deep learning”, “YOLO”, “U-Net”,
“transformer”, “dental imaging”,
“radiograph”, “CBCT”
Human dental images analysed with

Databases

Search terms

Inclusion deep learning; > 1 metric (accuracy,
precision, recall, F1, Dice, IoU)
. De-duplication — title/abstract scan
Screening

(n =280) — full-text review (n = 25)

Data extraction inter-reviewer x = 0.92
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3. Results

Seventeen primary studies met the inclusion criteria: nine
investigate lesion or caries detection (or other image-level
classifications) using one-stage convolutional detectors—
predominantly YOLO variants alongside a few Faster R-
CNN pipelines (3-5, 14-19). Seven focus on tooth or bone
segmentation with attention-augmented U-Nets, Swin-
UNETR or other 3-D CNN backbones, including a
Segment-Anything adaptation (6-11, 20). The remaining
one multimodal study pairs implant-brand classification
with its own segmentation branch, bridging the two task
categories (21).

Across nine datasets, reported precision ranges from
0.651 to 1.000 and recall from 0.727 to 1.000. The
strongest single result is obtained on the 800-image peri-
implantitis set from Taipei Medical University, where a
YOLOV7 network achieves perfect precision with 0.94
recall (F1 = 0.97) (4). In caries detection, the Tehran
University bite-wing series supports a YOLOv8 model
that provides the most even trade-off (P 0.85, R 0.80, F1
0.82)(3), whereas a speed-optimised YOLOvV9c trained at
Kirikkale University records the lowest YOLO accuracy
(F1 0.69)(5). The YoCNET hybrid—YOLOvV5
augmented with ConvNeXt features—raises precision to
0.99 on radiographs from Jinan Stomatological Hospital
but at the cost of reduced recall (0.85; F1 0.92) (17). Two
Faster R-CNN pipelines perform well on broader scenes:
five-fold cross-validation on 4 083 panoramics from
Pusan National University yields P = R = 0.90 with AUC
0.95 (18), and a Swin-Transformer variant reaches F1
0.95 on a 6 404-film mandibular-fracture set from Charité
Berlin (19). The CBCT periapical-lesion study from Graz
and Bern (Hadzi¢ 2023) publishes a full confusion matrix
but omits precision; using those counts we calculated
precision 0.38 and F1 0.53, the lowest among the
detectors (15).

Only two detection papers report genuine external-site
evaluation: the 195-scan periapical-lesion CBCT study
from Graz and Bern (15), the YOCNET periapical-
radiograph detector evaluated on 200 images from
Jiangsu Second Hospital (17). Several investigations use
alternative split strategies: Pusan National University
adopts  five-fold cross-validation (18); Kuirikkale
University merges training and validation counts and
discloses only the 150-image test set (5); the fracture
study balances its test cohort by matching control films
rather than stating absolute numbers (19).

Six of the eight CBCT segmentation papers report Dice
similarity coefficients > 0.91; the exceptions are 0.911 (9)
and 0.909 on the Tooth-CBCT subset in (10). When all
modalities are considered (adding PR (Panoramic
Radiograph)/BW (Bitewing) segmentation from (11) and
optical-microscope cracks from (20), the additional Dice
values are 0.89 (tooth), 0.85 (tooth-structure), 0.49
(caries) and = 0.857 (cracks), which lowers the pooled
all-modality mean. A multi-centre Chinese study trains
Swin-UNETR on 451 CBCT volumes but withholds

I
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internal split counts, evaluating instead on a 55-volume
external set and obtaining Dice values of 0.936 — 0.965
for tooth, sinus, bone and canal (6). Wang 2025 is the
only investigation to combine public and private
resources, blending the open NC-CBCT release, 45
Tooth-CBCT volumes from Hangzhou Dental Hospital,
the MICCAI Tooth panoramic challenge dataset and 409
Vident-lab video frames; Wang 2025 compared four
candidate backbones (baseline U-Net, Swin-UNETR,
ViT-decoder and a Segment-Anything derivative) across
its multi-source dataset but retained only the top
performer (Tooth-ASAM), a SAM-adapted hybrid, for
the final report; Tooth-ASAM reached its highest Dice
(0.975) on the public Vident-lab video set and its lowest
value (0.909) on the group’s private 45-volume Tooth-
CBCT collection from Hangzhou Dental Hospital, giving
a cross-source mean Dice of 0.942. (10) . Classical CNNs
remain competitive: an Attention U-Net on 39 Sichuan-
University scans (27 / 3 / 9 split) reports Dice 0.963 (7);
a multi-phase SegResNet trained on 57 / 13 volumes and
tested on 10 external scans from Semmelweis University
records Dice 0.965 £ 0.010 (8); and ensemble “3.5-D” U-
Nets lift Dice from 0.93 to 0.96 using four-fold cross-
validation on a 24-volume National Taiwan University
cohort (9). The remaining paper, Xie 2024, evaluates 600
optical-microscope images of cracked enamel (Sun Yat-
sen & Guangdong UT) and reports an improved FDB-
DeeplLabv3+ with mloU 0.7507 and MPA 0.7552;
following the procedure stated in the Methods section,
this corresponds to Dice ~ 0.857 for comparability (20).
For comparability across studies, pixel-wise F1 was
treated as Dice (11).

Only three segmentation papers provide a genuine
external-site test set: the multi-structure Swin-UNETR
study that added an independent 55-scan CBCT cohort
from additional hospitals to its ten-centre training pool
(6), the periodontal-bone SegResNet work evaluated on
10 CBCT volumes acquired at Bern after training solely
on Semmelweis data (8), and the MFPT-Net multi-task
model whose implant masks and classifications were
challenged with 252 CBCT scans collected at two clinics
outside the Peking University training cohort (21).

Split reporting is inconsistent: one large multi-centre
CBCT project supplies total case numbers but omit
detailed Train, Validation and Test allocation (6), while
three others rely exclusively on k-fold cross-validation
(9, 11, 18). Also, the Hadzic 2023 study trained its SCN
+ 3-D U-Net via four-fold cross-validation, and the
authors subsequently evaluated the frozen model on an
independent 195-scan set from Graz (15).

MFPT-Net simultaneously classifies implant brands
and segments implant bodies on 3-D CBCT data drawn
from Peking University and two collaborating clinics.
Without disclosing its internal split, the network achieves
F1 0.93 for multi-class implant recognition (5 categories)
and Dice 0.98 for implant-body segmentation when
tested on an independent set of 252 external implants (21;
Table 3).
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Table 3. Included studies characteristics

Study year Clinical Image Data Source Train/Val/ . -
# (Ref) application Type (Size) Test Model family Key overall metrics
Detection
. . Tehran U; 1 506 1205 /151 / 150 P 0.8483 -R0.7977 -
1 Bayati 2025 (3) Caries BW images (552 BW) (80 /10 /10 %) YOLOvV8 F10.8222
Peri- . P 1.0000 ‘R 0.9444 -
2 Lee 2024 (4) s PA Taipei MU (800) 600 / 100 / 100 YOLOV7 F1 0.9710
Nanjing Stom.
o Hosp. (1305) + YoCNET ) )
3 Liu 2024 (17) Pefézgﬁal' PA Jiangsu 2nd Hosp. 044/ ezxil /200 (YOLOVS5 + P 0'91818 0 5125530
(200 ext) ConvNeXt) '
Periapical- 4-fold CV 144 / Sp 0.843 -R 0.867 Acc
4 Hadzic 2023 (15) 1 fn CBCT Med U. Graz (195) NR / 36 U-Net CNN 0.895,
esto 195 ext Flew=0.53 Pesr=0.38
. Prague multi- P0.83 ‘R0.77 -F1
5 Kunt 2023 (16) Caries BW device (3 989) 2793 /598 /598  CNN ensemble 0.80
. Kirikkale U. 2 000 train + val P0.651 ‘R 0.727 -F1
6 Ayhan 2025 (5) Caries BW (2150) /150 test YOLOv9c 0.687
P0.90 -R0.90 -F1
7 Ryu 2023 (18) Bone-loss PR Pusan U. (4 083) 5-fold CV (4 083) Faster R-CNN 0.90 (AUC 0.95)
. Aga Khan U. 5226 /1493 / P 0.907 -R 0.856 -F1
8 Adnan 2024 (14) Caries RGB (7 465) 746 YOLOV5s 0.880
Vinayahalingam ~ Mandibular- Charité Berlin =6~ 1310/ 165/ 149 pgter RONN+  P0.977 -R0.960 -F1
9 PR 404 PR (1624 fx + (+ matched .
2022 (19) fracture Swin-T 0.947
4 780 non-fx) controls)
Segmentation
10 Chinese centres NR / NR / NR Dice 0.965 (tooth)
10 Liu 2024 (6) Multi-structure CBCT — 451 scans + 55 Swin-UNETR 0.936 (sinus) 0.954
(+55 ext)
external scans (bone) 0.948 (canal)
27 / 3/ 9 cases
11 Chen 2025 (7) Tooth CBCT Sichuan U. (39) (800 / 71 / 275 Attention U-Net Dice 0.9633
ROIs)
NC-CBCT release NC17361 /1
840 / 1 840
(4 938) patches
Tooth-CBCT — Tooth 5900 /
Hangzhou Dental 720 / 720
CBCT + PR Hosp. SAM derivative Dice range 0.909 -
12 Wang2025(10) Tooth +RGB (45 vols) patches “ToothASAM  0.975 (Avg 0.9418)
MICCAIPR 1
MICCAI-Tooth PR 600 / 200 / 200
(2 000 + 500) imgs
Vlden(tzll(z)i; video Video 300 / 29 /
80 vids
Palkovics 2025 Periodontal- Semmelweis U. Multi-phase .
13 @®) bone CBCT (80) 57 /13 / 10 ext o s Dice 0.9650 + 0.0097
14 Hsu 2022 (9) Tooth CBCT NTU (tlr(;';)emre 4-fold CV 3.5-D U-Net Dice 0.911
. Tooth / Tooth- Charité Tooth F11 0.89 -
15 SChne(lff)r 2025 structure / PR+BW (1881 PR 1625 BW 5-fold CV Delj_ll\ij]i\//?) . Structure F1 0.85 -
Caries 2689 BW) P Caries F1 0.49
Ootical Sun Yat sen & FDB- mloU 0.7507 MPA
16 Xie 2024 (20) Crack prea Guangdong UT 500/ — / 100 DeenLabud+ 0.7552
e 600 eepraby Dicecs~0.857
Segmentation
Classification
Classification: P 93.15
Peking U + 2 % ‘R93.31 % -F1
17 Zhao 2025 (21) Implant CBCT clinics (437) + 252 NR/NR/NR  MFPT-Net (3-D 93.18 % |
252 ext CNN multitask) . .
ext Segmentation: Dice
0.9804
@)ssimpmonen

t Pixel-wise F1 reported; treated as Dice * P = precision, R = recall, F1 = Fl-score, Sp = specificity, Acc = accuracy; Dice = Dice similarity coefficient;
AUC = area under ROC curve; mloU = mean Intersection-over-Union; MPA = mean pixel accuracy, MFPT-Net = Multi-task Fine-Grained
Progressive Training Network. PR = Panoramic Radiograph, BW = Bitewing, CV = Cross Validation, est = Estimate, ext = Extrnal, NR = Not
Reported
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avoid over-representing single-site large datasets;
weighted estimates are not directly comparable across
heterogeneous tasks.
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Table 4 pools the headline metrics for all 23 task—
dataset pairs using simple, un-weighted averages,
because four studies do not disclose the size of their
independent test sets. We report unweighted means to

Table 4. Pooled performance by task

Task category Metric (mean + SD) Range Number of studies
Caries detection (bitewing / photo) F1=0.80 £ 0.07 0.69 - 0.88 4 (3,5,14, 16)
Peri-implantitis detection F1=0.97 — 1(4)
Periapical-lesion detection (2-D radiograph) F1=092 — 1(17)
Periapical-lesion detection (CBCT) F1=053 1 — 1(15)
Periodontal bone-loss grading F1=0.90 — 1(18)
Mandibular-fracture detection F1=0.95 — 1(19)
Implant-brand classification F1=0.93 - 1(21)
Detection / classification* F1=0.84+0.14 0.53 - 0.97 10
Tooth segmentation (CBCT) Dice = 0.95 £ 0.02 0.91-0.97 4(6,7,9,10)%
Periodontal-bone segmentation Dice = 0.97 — 1(8)
Implant-body segmentation Dice = 0.98 - 1(21)
Sinus segmentation Dice = 0.936 - 1 (6)
Bone segmentation Dice = 0.954 - 1 (6)
Canal segmentation Dice = 0.948 — 1(6)
Tooth segmentation (PR) § Dice = 0.89 - 1(11)
Enamel-crack segmentation* Dice ~0.857 — 1 (20)
Tooth-structure segmentation § Dice = 0.85 - 1(11)
Caries segmentation § Dice = 0.49 — 1(11)

Segmentation* Dice = 0.89 £0.13 0.49 - 0.98 13

\IQ Dantomaxi ataclal
* Dice for Xie 2024(20) estimated from mloU = 0.7507 using the conversion described in the Methods section.  Wang 2025 (10) reports multi-
source Tooth-ASAM with per-source Dice; for the Tooth-CBCT subset the Dice is 0.909 (lowest of its sources). + Hadzi¢ 2023 (15)did not
publish precision or F1. Using the confusion-matrix counts provided, we calculated precision ~ 0.38 and F1 ~ 0.53, which is included here

and in the pooled mean. * Pooled rows use simple, unweighted averages over task-dataset pairs. § Schneider 2025 (11) reports pixel-wise

F1 (5-fold CV); for segmentation this is equivalent to Dice, so we list Dice = 0.89 (tooth), 0.85 (tooth-structure), 0.49 (caries).

Among the ten detection/classification papers the
overall mean is F1 = 0.84 + 0.14 (0.53 — 0.97). The peri-
implantitis YOLOv7 detector evaluated on 800
periapicals from Taipei Medical University reports the
highest F1 of 0.97 (4), whereas the CBCT periapical-
lesion study from Graz/Bern vyields the lowest
performance; precision derived from its published
confusion matrix gives F1 = 0.53 (15). Caries detection is
the most frequently explored sub-task, appearing in four
datasets (3, 5, 14, 16) with a pooled F1 = 0.80 + 0.07.
Single-dataset categories reach F1 = 0.92 for 2-D
periapical lesions (17), 0.90 for periodontal bone-loss
grading (18), 0.95 for mandibular-fracture detection (19)
and 0.93 for five-class implant-brand recognition (21).

Segmentation (all modalities) yields a pooled Dice =
0.89 + 0.13 (0.49 — 0.98) across 13 task—dataset pairs
(Table 4). For CBCT-only pairs, four independent tooth-
only CBCT series (6, 7, 9, 10) cluster tightly at Dice =
0.95 + 0.02 (0.91 — 0.97). Multi-structure Swin-UNETR
reports Dice 0.936-0.965 for tooth, sinus, bone and canal
across 451 CBCT volumes (6); periodontal-bone
SegResNet achieves Dice = 0.97 (8), and implant-body
MFPT-Net tops the group at Dice = 0.98 (21). The non-
CBCT outlier is enamel-crack segmentation on 600
optical-microscope images, where Dice was estimated at
~ 0.857 from the reported mloU 0.7507 to permit
comparison (20).

Inference speed reporting was largely absent. Only one

I

primary study (Adnan 2024’s smartphone caries
prototype) published a numeric runtime, quoting ~14
frames per second (fps) (= 71 ms per frame) on a mobile
system-on-chip (SoC) (14). Both papers invoke the
YOLO family’s reputation for real-time inference, citing
the single-shot, one-stage design that characterises
YOLOv7 and YOLOVS, but neither paper backs the
“real-time” claim with concrete runtime data such as FPS
or per-image latency (3, 4). Similarly, the benchmarking
work by Ayhan 2025 (YOLOV9c) and Schneider 2025
(Vision-Transformer vs CNN) compared architectures
qualitatively yet omitted hardware-specific timings (5,
11). None of the CBCT segmentation papers recorded
inference throughput.

Across the 17 included studies, detector performance
varied by model family and dataset. YOLO variants
spanned F1 0.687-0.971 (lowest in a v9c caries model (5);
highest in peri-implantitis with v7 (4)), with mid-range
results on bite-wing caries (3) and intra-oral photos (14).
The same study reports AUC = 0.78 while achieving F1 =
0.88; differences reflect metric choice and class balance
(14). The hybrid YoCNET (YOLOv5+ConvNeXt)
achieved the highest reported precision (P = 0.9888) with
lower recall (R = 0.8530) (17). Faster R-CNN pipelines
were strong on panoramics (F1=0.90 (18) and 0.947 with a
Swin-T backbone (19)), though evaluated via cross-
validation or matched controls (18, 19). Only two detection
works used genuine external tests: a CBCT periapical-
lesion study (195 scans) reporting Sp = 0.843, R = 0.867,
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Acc = 0.895 with low F1=0.53 and P~0.38 (derived from
the published confusion matrix) (15), and YoCNET on 200
external periapical images). Across all detectors, the lowest
F1 was Hadzi¢ 2023 (=0.53) (15). For segmentation, U-Net
derivatives reported high Dice (=0.91-0.963) (7, 9) and
SegResNet reached Dice = 0.965 £+ 0.010 (8); Swin-
UNETR  achieved Dice  0.936-0.965  across
tooth/sinus/bone/canal with a 55-scan external set (6), and
a SAM-based model (Tooth-ASAM) reached Dice 0.909—
0.975 (mean 0.9418) across mixed sources (10).
DeeplLabV3+ performed well for tooth/structure (Dice
0.89/0.85) but was weaker for caries (Dice 0.49) (11), while

Table 5. Comparative performance of major model families

Spring 2025, Volume 14, Number 2

a multitask 3-D MFPT-Net showed strong external
performance (classification F1=93 % and segmentation
Dice~0.98 on 252 CBCT scans) (21). Split reporting was
heterogeneous, NR counts and k-fold CV were common,
limiting cross-study comparability (6, 9, 11, 18). Top
performers: YOLOvV7 delivered the highest single-site
detector score (F1 = 0.971) (4); YOCNET offered the
highest precision and is one of the only externally tested
detectors (17); for segmentation, MFPT-Net led on external
data (21), with SegResNet (8) and Swin-UNETR (6) the
strongest non-implant CBCT results, and Tooth-ASAM the
highest within-source Dice range (10; Table 5).

. Weaknesses
Model family Studies (Ref) Task / Modality nghes.t Rep orfed key Strf: ngt%ls observed observed in this
metrics (as given) in this dataset
dataset
F10.687-0.971
. (3)P0.8483 ‘R0.7977 -F1  Highestsinglesite ~ _0"est YOLOF1
Bayati 2025 (3); . at 0.687 (v9c
Detection (BW, 0.8222 detector (YOLOv? F1 .
YOLO Lee 2024 (4); — i ) T ] caries) (5); no
PA, intra-oral (4) P1.000 -R0.944 -F1 0.971) (4); solid mid: .
(v5/v7/v8/v9c) Ayhan 2025 (5); external-site
Adnan 2024 (14) RGB) 0971 range on BW and evaluation
(14) P 0.907 -R 0.856 - F1 RGB (3, 14) e
0.880
Balanced
. P 090 -R0.90 -F10.90 - . Reported via 5-
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ConvNeXt) .
images
Reasonable multi- Lower F1 than top
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performance external site
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(Tooth-ASAM) Wang 2025 (10) (CBCT + PR+ 0.9418) source che range CBCT subset
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4. Discussion

Deep-learning performance in the 17 primary studies is

already strong enough to influence day-to-day dentistry,
yet the way results are reported still lags behind their raw
accuracy.
Our pooled analysis shows that detection only papers
(excluding the implant-brand classifier; n = 9) reach a
broad F1 band of 0.53 — 0.97 —the lower bound reflects
the CBCT periapical-lesion detector in Hadzi¢ 2023 with
F1 = 0.53 derived from its published confusion matrix
(15); with YOLOv7 on peri-implantitis periapicals
setting the high-water mark (F1 0.97; P 1.00; R 0.94) (4)
and a speed-optimised YOLOv9c anchoring the lower
end among YOLO variants (F1 0.69) (5). After metric
harmonization, segmentation results across all modalities
(n = 13 task—dataset pairs) yield Dice 0.89 + 0.13 (range
0.49-0.98). CBCT-only tooth segmentation remains
tighter at Dice 0.95 £ 0.02 (0.91-0.97), with the SAM-
derived Tooth-ASAM topping out at Dice 0.975 (10);
even the smallest CBCT dataset, a 3.5-D U-Net
ensemble, clears Dice 0.91 (9). Harmonization steps
included treating pixel-wise F1 as Dice (Schneider 2025
(11)) and converting mloU to Dice for cracks (Xie 2024:
mloU 0.7507 — Dice = 0.857) (20). One multitask
network bridges the two worlds, pairing implant-brand
classification (F1 0.93) with implant-body segmentation
at Dice 0.98 (21). These figures confirm that transformer-
enhanced U-Nets, SegResNets and SAM adaptations
have converged on near-surgical CBCT overlap
accuracy, whereas detector performance remains
modality-sensitive—excellent on peri-implantitis
hotspots but weaker on low-contrast enamel lesions.

Tooth segmentation on panoramic radiographs (PR)
reaches Dice = 0.89 (11), whereas CBCT tooth
segmentation spans 0.909-0.965 across four independent
series (6, 7, 9, 10). On PR, tooth-structure masks are
lower (Dice ~ 0.85) and caries segmentation is markedly
weaker (Dice = 0.49) (11). In multi-structure CBCT,
component Dice are consistently high (tooth 0.965; sinus
0.936; bone 0.954; canal 0.948) (6). These modality-
linked gaps likely reflect inherent contrast/resolution
advantages of CBCT, 3-D context, and differences in
annotation granularity.

On panoramic radiographs, reported sensitivity varies
widely due to head-position variability, magnification
and distortion; single-site reports can be high, whereas
multi-site settings are lower. For intra-oral/smartphone
photographs, the included study reports AUC = 0.78
alongside overall F1 =~ 0.88 (14), underscoring
illumination/focus shifts and device heterogeneity. To
mitigate these gaps, domain adaptation merits systematic
evaluation—e.g., appearance/style transfer (CycleGAN-
style unpaired translation), histogram or color
normalization, and adversarial feature-level alignment;
test-time adaptation and multi-source aggregation (as in
Tooth-ASAM across NC-CBCT, Tooth-CBCT, PR and
video (10)) are also promising. Future work should report
cross-domain performance deltas (internal to external)
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and ablate adaptation components to quantify their
contribution.

Preliminary reader studies suggest that, in specific
cohorts and structures, high volumetric Dice (=0.94—
0.95) may be judged acceptable for planning; however,
acceptability is task-, structure-, and surface-error—
dependent and no field-wide thresholds exist (22, 23).We
therefore refrain from adopting a numeric cut-off.

Across the corpus, performance closely tracked dataset
composition. Higher scores were observed on
homogeneous, single-site cohorts with consistent
acquisition (e.g., CBCT tooth segmentation at Dice 0.91—
0.97), whereas more heterogeneous or low-contrast tasks
(e.g., PR caries masks at Dice ~ 0.49) lagged (6, 7, 9-11).
Annotation protocol (single rater vs. consensus),
prevalence and case mix, and split design (external test
vs. k-fold CV) all influenced headline figures (6, 8, 9, 11,
18, 21) . Multi-source aggregation improved robustness:
Wang 2025 combined NC-CBCT, Tooth-CBCT, PR and
video and achieved within-source Dice up to 0.975, albeit
with a lower result (0.909) on the private Tooth-CBCT
subset. Durable public endpoints are essential for
replication; at the time of writing, (10) the NC-CBCT link
cited in (10) was inaccessible during manuscript
preparation; mirroring on durable repositories would aid
reproducibility.

These advances in deep learning are beginning to
reshape clinical workflows across diagnosis, treatment
planning, and disease monitoring in dentistry. For
diagnosis, second-reader systems based on YOLOVS
have demonstrated improved detection of enamel lesions
on bitewing radiographs, achieving an F1 of 0.82,
precision of 0.85, and recall of 0.80, thus reducing missed
early caries cases (3). In treatment planning, high-
precision segmentation of single-tooth CBCT volumes—
with Dice scores ranging from 0.960 to 0.963—enables
automated generation of implant surgical guides and
clear aligner designs, reducing clinician workload and
improving consistency (7, 9). For monitoring,
convolutional neural networks trained on panoramic
images can now grade periodontal bone loss with an AUC
of 0.95 and an F1 of 0.90, supporting longitudinal
surveillance of periodontal health with minimal manual
input (19).

Despite these encouraging developments, several key
challenges remain before deep-learning systems can be
fully integrated into clinical practice. Generalisation
across sites and imaging conditions continues to be a
concern, with performance typically dropping by an
appreciable amount in metrics like Dice or F1 when
models are evaluated on external datasets. For instance, a
CBCT periapical-lesion detector evaluated on an
independent cohort reported Acc = 0.895 with F1 = 0.53
derived from its confusion matrix (15); other studies
report only internal or only external figures, limiting
paired deltas (6, 8, 21). Explainability is another limiting
factor; only a minority provide saliency/attention
overlays or probability calibration (e.g., architecture
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comparisons (11)). Embedding calibrated probabilities

and case-level heatmaps directly in the viewer could
improve interpretability and clinician acceptance.

Beyond saliency/attention overlays, clinician trust
depends on usable evidence. Small reader studies in
medical imaging suggest that heatmaps and calibrated
probabilities can improve decision confidence, but
standardized validation in dentistry remains limited. We
therefore recommend (i) reporting probability calibration
(e.g., temperature scaling with expected calibration
error), (ii) embedding case-level overlays directly in the
radiology viewer, and (iii) conducting user-centred
reader studies that measure time-to-decision, confidence
shifts, and error types with and without explainability.
These endpoints would connect technical metrics to
clinical usability.

Finally, the current body of work lacks prospective or
randomized studies—none of the 17 reviewed papers
meet these standards—leaving real-world impacts on
diagnostic accuracy, clinical efficiency, or chair-time
untested.

While deep-learning models have reached high
performance on bitewings and standard CBCT scans, key
modality-specific gaps still limit broader clinical
deployment. On panoramic radiographs, diagnostic
sensitivity can be unstable—owing to head-position
variability and geometric distortion—despite strong
single-site results (19). For intra-oral photographs, only
one included detector study reported performance (F1 =
0.88) (14), underscoring the need for broader external
validation and domain-adaptation strategies for
illumination and focus shifts. Micro-scale detection also
remains under-developed: on optical-microscope
enamel-crack images, the improved DeeplLabv3+
reached mloU = 0.7507 (= Dice 0.857) (20), and small-
fissure sensitivity remains limited by dataset size.
Beyond the included set, soft-tissue classification will
require curated, diverse photo atlases and external-site
testing before routine use. Finally, CBCT scans
containing heavy-metal restorations continue to degrade
image quality and segmentation performance, and none
of the included segmentation papers explicitly evaluated
metal-artifact-reduction within the Al pipeline (6-11, 20,
21). Targeted artifact-aware training remains an open
need (13). To mitigate domain shift across modalities and
scanners, multi-source aggregation (e.g., Wang 2025’s
Tooth-ASAM across NC-CBCT, Tooth-CBCT, PR and
video  (10)) and explicit domain-adaptation (e.g.,
style/appearance transfer or feature-level adaptation)
merit systematic evaluation. Bridging these modality-
specific gaps will require large, multi-centre datasets;
artifact-aware or domain-adaptive architectures; and
rigorous, externally validated evaluations to ensure
reliability in real-world conditions. Our review could not
compute a cross-study latency average because only one
primary paper (14) published a numeric runtime (~14 fps
on a mobile SoC). Flagship YOLO papers describe their
detectors as “real-time” but the articles themselves omit
frames-per-second or millisecond figures. By contrast,

Spring 2025, Volume 14, Number 2

the MLCommons MLPerf Inference benchmark obliges
every submission to disclose batch-1 latency, hardware
and software stack, and “Queries per Second” —making
vendor claims directly comparable (24). A one-page
“speed sheet” following the MLPerf template would let
journals verify that a model advertised for chair-side use
really meets the <100 ms latency widely accepted in
human-computer-interaction studies. Authors should also
report effective Tera Floating point operations per second
(TFLOPS) (images s™' x model-FLOPS) so throughput
scales with hardware generations can be normalised
across clinics that own different GPUs. Half of the
included papers do not state framework versions,
CUDA/cuDNN libraries, augmentation pipelines or even
the random-seed policy. Such omissions block byte-for-
byte replication and conceal latent implementation bugs
that sometimes inflate headline metrics. At minimum,
studies should publish inference scripts, weights and
Docker files (or conda environments) listing exact
package versions. The federated-learning work of
Schneider 2023 (12) proves that privacy-preserving
containers can be shared without moving raw patient
data, so legal constraints are surmountable. Bringing the
strands together, six inter-locking actions would move
dental-imaging Al from promising prototypes to
reproducible, clinically dependable tools:

1-Publish a speed-sheet in every paper. Authors should
append a one-row table—mirroring the MLPerf
template—listing batch-1 latency (ms), frames per
second and effective TFLOPS on a named GPU, plus an
edge-device figure whenever “chair-side” on a named
GPU, including pre-/post-processing or “hand-held” use
is claimed (24) (For clarity, we define “chair-side viable”
as end-to-end batch-1 latency < 100 ms per image on
named hardware, including pre/post-processing.
Because, aside from one study on a mobile app (~14 fps),
the included papers did not report model-specific latency
or FPS, we treat “real-time” claims as unquantified and
refrain from inferring < 100 ms). Transparent timing is
essential; accuracy alone says nothing about workflow
impact.

2-Standardise core metrics. Report Dice (or volumetric
Dice) for every segmentation task and F1 at loU = 0.5 for
every detection task; treat pixel-wise F1 as Dice and
convert mloU—Dice as specified in Methods; confusion
matrices or ROC curves should appear in the supplements
to reveal class imbalance (25). Harmonising on these two
anchors prevents today’s scatter of pixel-F1, mloU and
specificity-only reports and lets investigators track real
progress year-on-year.

3-Create an open benchmark with automatic scoring. A
de-identified, multi-centre repository of bitewings,
panoramics and CBCT volumes should host dockerised
submissions. The server would grade each container on
accuracy (Dice/F1) and latency, publishing a public
leaderboard analogous to Common Objects in Context
(COCO) for detection or Machine Learning Performance
(MLPerf) for inference (24-26).
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4-Release full inference pipelines. Every study should
provide Docker (or conda) images that fix framework
versions, CUDA/cuDNN  builds, augmentation
parameters and random seeds. Such containers let
independent groups reproduce results byte-for-byte and
surface implementation bugs early; the federated-
learning work of Schneider 2023 shows this is feasible
without moving raw data(12).

5-Leverage federated learning and explainable Al.
Multi-centre  federated  pipelines have already
outperformed both local and centrally merged training
while keeping data private(12). At inference time,
saliency maps or attention overlays should be embedded
directly into radiology viewers so clinicians can see why
the network fired.

6-Validate prospectively with hybrid architectures.
Hybrid CNN-Transformer designs promise to pair
YOLO-level speed with ViT-level context. Their real-
world impact on diagnostic yield, chair-time and cost
now needs proof in multi-centre, prospective trials that
use the standardised metrics and speed sheets outlined
above.

If the field adopts these practices, the high accuracies
already demonstrated by YOLO detectors(3-5, 16),
transformer-enhanced U-Nets (7-9)and SAM
derivatives(10) can translate into dependable, vendor-
neutral systems that genuinely shorten chair-time and
improve diagnostic care.

5. Conclusions

Between 2022 and 2025, dental-imaging Al moved
from feasibility to credible pilot readiness. Detectors
achieved high F1 on bitewings and periapicals, while
CBCT segmenters consistently reached high Dice—
topping out near 0.98 on select tasks. Across all
modalities, pooled segmentation performance was strong
(= Dice 0.89 £ 0.13), and CBCT-only tooth segmentation
was tighter (= 0.95 £ 0.02). Detection remained modality-
sensitive, varying with lesion salience and acquisition
quality.

We judge three model families as pilot-ready in their
target niches: (i) YOLOVS for chair-side caries detection
on bitewings, (ii) Tooth-ASAM for CBCT tooth
segmentation across mixed sources, and (iii) SegResNet
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