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This narrative review synthesises 2022–2025 evidence on deep learning for dental imaging, 

focusing on diagnostic accuracy (precision, recall, F1), segmentation quality (Dice), and reporting of 

inference speed. Representative model families are also situated—YOLO one-stage detectors, 

attention-augmented U-Nets, 3-D CNNs, and Segment Anything Model–derived hybrids (“SAM-

derived” = architectures adapted from Segment Anything for dental images)—within current clinical 

workflows. From database searches of PubMed, Scopus and IEEE Xplore (January 2022 – May 2025), 

342 records were retrieved; after deduplication and screening, 17 primary studies were included. 

Detection/classification studies (n = 10) reported overall F1 values up to 0.97 (highest in peri-implantitis 

detection; internal test; n = 100 from an 800-image dataset); the lowest externally evaluated detector 

reported ~0.53 F1 on CBCT periapicals (external site; n = 195 scans). YOLOv8 achieved F1 ≈ 0.82 on 

bitewings in an internal test split (n = 150). Segmentation studies (n = 8) reported Dice ~0.49–0.98: 

Attention U-Net reached 0.963 for single-tooth CBCT on an internal test (n = 9 scans). A multi-structure 

Swin-UNETR reported Dice 0.936–0.965 for tooth/sinus/bone/canal on an external set (n = 55 scans). 

A SAM-derived model (Tooth-ASAM) achieved 0.909–0.975 Dice across mixed public/private 

datasets. While three studies included external-site validation, none were prospective or randomised. 

Key priorities for clinical translation were identified: consistent speed reporting (batch-1 latency/FPS 

on named hardware), metric harmonisation (Dice for segmentation; F1 at IoU = 0.5 for detection), 

dockerised inference pipelines, and multi-centre external testing followed by prospective trials to 

quantify clinical impact. 
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1. Introduction 
anual interpretation of dental images—
including bitewing, periapical, panoramic 
and cone-beam CT (CBCT) views—
remains labour-intensive and suffers from 
inter-observer variability. For example, 
early inter-proximal caries on bitewings 

are subtle in contrast, periapicals and panoramics demand 
compensation for geometric distortion, and a single 
CBCT scan may contain > 400 axial slices, requiring 10 
minutes or more of scrolling in a busy clinic. Two recent 
systematic reviews underscored both the promise and 
fragmentation of current evidence. Carvalho et al. pooled 
25 studies of AI caries detection in bitewings and 
reported pooled sensitivity 0.87 and specificity 0.91 but 
noted small test sets and scarce external validation (1). 
Kot et al. synthesised 18 CBCT tooth-segmentation 
papers and found pooled Dice similarity coefficient 

(Dice) 0.93 while highlighting heterogeneous metrics and 
a lack of head-to-head model comparisons (2). These 
gaps motivate an updated, task-level synthesis. To orient 
the reader, we highlight three developments since 
January 2022 that shape current performance and 
reporting: 

1. Mature one-stage detectors. The You Only Look 
Once (YOLO) family has evolved from v5 through v8. 
Bayati et al. reported YOLOv8 achieved F1 (F1-Score) 
0.82 for inter-proximal caries on bitewings (3). Lee et al. 
reported YOLOv7 reached F1 0.97 for peri-implantitis 
detection (4). A benchmarking study across YOLO variants 
(v5–v9c) described “real-time” operation but did not 
disclose batch-1 latency or frame-rate figures; nevertheless, 
precision–recall trade-offs approached those of two-stage 
detectors such as Faster Region-Based Convolutional 
Neural Network (R-CNN) in several tasks (5). 

M 
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2. Task-specific segmentation networks. Attention-
augmented U-Nets and 3-D CNN architectures 
consistently produce high-fidelity CBCT masks. Liu et 
al. used a Swin-U-Net Transformer (UNETR) backbone 
to segment tooth, sinus, bone and mandibular canal 
simultaneously, reporting Dice 0.94–0.97 across 
structures (6). Chen et al. integrated an Attention U-Net 
with V-Net to achieve Dice 0.963 for single-tooth CBCT 
segmentation and root-canal measurement (7). Palkovics 
et al. employed a multi-phase 3-D Segmentation Residual 
Network (SegResNet) for full-arch CBCT, reaching Dice 
0.965 ± 0.010 on periodontal bone topography (8). Hsu 
et al. improved Dice to 0.96 by majority-voting a “3.5 D” 
U-Net ensemble (9). 

3. Foundation-model adaptation. Transformer 
hybrids have entered dentistry via the Segment Anything 
Model (SAM). Here and throughout, we use “SAM-
derived” to denote models adapted from SAM backbones 
(e.g., promptable/finetuned variants), distinct from 
classical U-Nets or pure ViT decoders. Wang et al. 
adapted SAM to multimodal tooth images (CBCT, 
panoramics, intra-oral photos), achieving Dice 0.909–
0.975 while using ≈ 40 % of the manual labels required 
by traditional CNNs (10). Schneider et al. compared 
CNN, transformer and hybrid backbones across three 
dental segmentation tasks; hybrids retained CNN-level 
accuracy but demanded more GPU memory —still 
acceptable for back-office batch processing (11). These 
label-efficient, prompt-based approaches foreshadow 
task-agnostic AI workflows in dentistry. 

Since January 2022, 17 primary studies have reported 
new dental AI models with transparent metrics and, in 
three cases, true external-site validation. Yet no narrative 

so far has compared YOLOv8 speed with Shifted-
Window U-Net Transformer (Swin-UNETR) Dice or 
examined how SAM-derived models slot into existing 
clinical pathways. Moreover, federated learning for tooth 
segmentation on panoramics has recently outperformed 
local and central training without sharing raw data (12), 
and AI-based metal-artifact reduction is beginning to 
improve CBCT image quality upstream of segmentation 
(13). Incorporating these 2022-2025 advances provides a 
more realistic picture of what clinicians can expect 
today—and what gaps remain. 

Consequently, the present narrative review: 

 (i) collates 17 peer-reviewed primary studies (2022-
2025) covering detection, segmentation and 
classification; 

 (ii) quantifies pooled accuracy (precision, recall, F1, 
Dice) and runtime; 

 (iii) discusses clinical readiness, remaining challenges 
and research priorities—including federated learning, 
artifact-aware networks and multi-centre prospective 
trials. 

By triangulating these strands, the review aims to 
provide clinicians, researchers and developers with an 
up-to-date, task-level map of deep-learning performance 
in dental imaging and a clear agenda for bringing AI tools 
from bench to chair-side. 

For clarity, all acronyms and technical terms used in this 
review (e.g., CBCT, PR, mIoU, Dice) are defined in the 
Abbreviations table (Table 1), and each is expanded at 
first use.

 
Table 1. List of abbreviations and definitions used in the review 

Abbreviation Definition 

AI Artificial intelligence 
AUC Area under the ROC curve 
BW Bitewing radiograph 
CBCT Cone-beam computed tomography 
CNN Convolutional neural network 
CV Cross-validation (e.g., 5-fold) 
Dice Dice similarity coefficient (pixel-wise F1 for segmentation) 
F1-score Harmonic mean of precision and recall 
FPS Frames per second 
IoU Intersection-over-Union 
mIoU Mean Intersection-over-Union 
MPA Mean pixel accuracy 
PA Periapical radiograph 
PR Panoramic radiograph 
RGB Red–Green–Blue (photograph) 
ROI Region of interest 
SAM Segment Anything Model 
SegResNet Segmentation Residual Network 
Swin-UNETR Shifted-Window Transformer U-Net (UNETR) 
TFLOPS Tera floating-point operations per second 
U-Net Encoder–decoder segmentation network 
ViT Vision Transformer 
YOLO You Only Look Once (one-stage detector) 
MFPT-Net Multi-task Fine-Grained Progressive Training Network 
MICCAI Medical Image Computing and Computer-Assisted Intervention (challenge context) 
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2. Materials and Methods 

This is a narrative review with systematic elements 
(database searches, dual independent screening, 
agreement assessment). Screening counts are reported in 
text; no flow figure is provided. 

We searched PubMed, Scopus and IEEE Xplore for 
English-language records published from 1 January 2022 
to 31 May 2025. The Boolean string combined core terms 
for deep learning ("deep learning" OR "convolutional 
neural network" OR "transformer"), model names 
("YOLO" OR "U-Net"), and imaging keywords ("dental 
imaging" OR "radiograph" OR "CBCT"). A hand search 
of reference lists completed the strategy.  

We included peer-reviewed studies that (i) analysed 
human dental images using a deep-learning model and 
(ii) reported at least one quantitative performance metric 
from the set below.  
To ensure a consistent comparison, only metrics that are 
widely reported and clinically meaningful were 
extracted. 
(for TP = true positives, FP = false positives, FN = false 
negatives, TN = true negatives, P = prediction mask, G = 
ground-truth mask) 

 Precision (positive-predictive value): TP / (TP + FP) 
– indicates how often a positive call is correct, limiting 
false-positive interruptions during chair-side work. 

 Recall (sensitivity): TP / (TP + FN) – captures how 
many true lesions are detected; missed disease directly 
affects patient care. 

 F1-score (harmonic mean of precision and recall): 2 
× TP / (2 × TP + FP + FN) – the default summary number 
in object-detection studies because it balances FP and FN. 

 Dice similarity coefficient (pixel-wise F1): 2 × |P ∩ 
G| / (|P| + |G|) – the dominant overlap metric for 
segmentation. 

 Intersection-over-Union (IoU, Jaccard index): |P ∩ 
G| / |P ∪  G| – a stricter overlap measure than Dice; its 
class-averaged form is mean IoU (mIoU). 

 Mean pixel accuracy (MPA): average over classes of 
TPₖ / (TPₖ + FNₖ) – occasionally reported in enamel-crack 
work as a complement to mIoU. 

 Specificity: TN / (TN + FP) – relevant for fracture or 
bone-loss screening where over-referral must be 
minimised. 

 Accuracy: (TP + TN) / (all) – retained for implant-
brand classifiers, though less informative in imbalanced 
datasets. 

Precision–recall metrics were extracted and reported for 
all detection studies. If a study did not report an F1-score, 
it was calculated from the provided confusion matrix or 
the reported precision and recall values: 

𝐹1 =
2 × Precision × Recall

Precision + Recall
      

The derived value was then included in the pooled 
statistics and marked in the tables as estimated. 

For segmentation studies, we extracted whichever 
overlap metric was provided—Dice or mean Intersection-
over-Union (mIoU) or pixel-wise F1—rather than 
pooling them together. 
To enable pooled summaries, we harmonized 
segmentation metrics as follows. For pixel/voxel-wise 
segmentation, pixel-wise F1 and Dice are mathematically 
equivalent; therefore, when a study reported pixel-wise 
F1 we treated it as Dice with the same value. We did not 
convert object level detection F1-score to Dice. 

Studies reporting Dice are summarized by their Dice 
values, and those reporting mIoU by their mIoU values. 
When only mIoU was available but a Dice approximation 
was useful for interpretation, we calculated 

𝐷𝑖𝑐𝑒{𝑒𝑠𝑡} =
2  × {𝑚𝐼𝑜𝑈}

1  +  {𝑚𝐼𝑜𝑈}
 

which holds exactly for binary masks on the same 
region but serves only as an approximation when mIoU 
is averaged across multiple classes. The derived value 
was then included in the pooled statistics and marked in 
the tables as estimated. 

Simple, unweighted means were reported to avoid over-
representing large, single-site datasets within 
heterogeneous tasks. We also recorded split design 
(train/val/test counts; k-fold cross-validation) and 
whether evaluation was internal, external-site, or 
matched-control. 
Claims of 'real-time' performance made without specific 
timings or hardware were recorded qualitatively; latency 
was not estimated in these cases. 

We retrieved 342 records (PubMed 188, Scopus 122, 
IEEE Xplore 32). After removing 62 duplicates, 280 
titles/abstracts were screened; 255 were excluded as off-
topic or reviews. We assessed 25 full texts, excluding 8 
(five lacked quantitative metrics; three were non-
human/ex-vivo), leaving 17 primary studies for inclusion. 
Two reviewers screened independently; pilot κ = 0.89 
and overall κ = 0.92 with consensus resolution of 
discrepancies (Table 2). 

 

Table 2. A summary description of method steps  
 Description 

Databases 
PubMed, Scopus, IEEE Xplore 

(English; 1 Jan 2022 – 31 May 2025) 

Search terms 
“deep learning”, “YOLO”, “U-Net”, 

“transformer”, “dental imaging”, 
“radiograph”, “CBCT” 

Inclusion 
Human dental images analysed with 
deep learning; ≥ 1 metric (accuracy, 

precision, recall, F1, Dice, IoU) 

Screening 
De-duplication → title/abstract scan 
(n = 280) → full-text review (n = 25) 

Data extraction inter-reviewer κ = 0.92 
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3. Results 

Seventeen primary studies met the inclusion criteria: nine 
investigate lesion or caries detection (or other image-level 
classifications) using one-stage convolutional detectors—
predominantly YOLO variants alongside a few Faster R-
CNN pipelines (3-5, 14-19). Seven focus on tooth or bone 
segmentation with attention-augmented U-Nets, Swin-
UNETR or other 3-D CNN backbones, including a 
Segment-Anything adaptation (6-11, 20). The remaining 
one multimodal study pairs implant-brand classification 
with its own segmentation branch, bridging the two task 
categories (21). 

Across nine datasets, reported precision ranges from 
0.651 to 1.000 and recall from 0.727 to 1.000. The 
strongest single result is obtained on the 800-image peri-
implantitis set from Taipei Medical University, where a 
YOLOv7 network achieves perfect precision with 0.94 
recall (F1 = 0.97) (4). In caries detection, the Tehran 
University bite-wing series supports a YOLOv8 model 
that provides the most even trade-off (P 0.85, R 0.80, F1 
0.82)(3), whereas a speed-optimised YOLOv9c trained at 
Kırıkkale University records the lowest YOLO accuracy 
(F1 0.69)(5). The YoCNET hybrid—YOLOv5 
augmented with ConvNeXt features—raises precision to 
0.99 on radiographs from Jinan Stomatological Hospital 
but at the cost of reduced recall (0.85; F1 0.92) (17). Two 
Faster R-CNN pipelines perform well on broader scenes: 
five-fold cross-validation on 4 083 panoramics from 
Pusan National University yields P = R = 0.90 with AUC 
0.95 (18), and a Swin-Transformer variant reaches F1 
0.95 on a 6 404-film mandibular-fracture set from Charité 
Berlin (19). The CBCT periapical-lesion study from Graz 
and Bern (Hadzić 2023) publishes a full confusion matrix 
but omits precision; using those counts we calculated 
precision 0.38 and F1 0.53, the lowest among the 
detectors (15). 

Only two detection papers report genuine external-site 
evaluation: the 195-scan periapical-lesion CBCT study 
from Graz and Bern (15), the YoCNET periapical-
radiograph detector evaluated on 200 images from 
Jiangsu Second Hospital (17). Several investigations use 
alternative split strategies: Pusan National University 
adopts five-fold cross-validation (18); Kırıkkale 
University merges training and validation counts and 
discloses only the 150-image test set (5); the fracture 
study balances its test cohort by matching control films 
rather than stating absolute numbers (19). 

Six of the eight CBCT segmentation papers report Dice 
similarity coefficients ≥ 0.91; the exceptions are 0.911 (9) 
and 0.909 on the Tooth-CBCT subset in (10). When all 
modalities are considered (adding PR (Panoramic 
Radiograph)/BW (Bitewing) segmentation from (11) and 
optical-microscope cracks from (20), the additional Dice 
values are 0.89 (tooth), 0.85 (tooth-structure), 0.49 
(caries) and ≈ 0.857 (cracks), which lowers the pooled 
all-modality mean. A multi-centre Chinese study trains 
Swin-UNETR on 451 CBCT volumes but withholds 

internal split counts, evaluating instead on a 55-volume 
external set and obtaining Dice values of 0.936 – 0.965 
for tooth, sinus, bone and canal (6). Wang 2025 is the 
only investigation to combine public and private 
resources, blending the open NC-CBCT release, 45 
Tooth-CBCT volumes from Hangzhou Dental Hospital, 
the MICCAI Tooth panoramic challenge dataset and 409 
Vident-lab video frames; Wang 2025 compared four 
candidate backbones (baseline U-Net, Swin-UNETR, 
ViT-decoder and a Segment-Anything derivative) across 
its multi-source dataset but retained only the top 
performer (Tooth-ASAM), a SAM-adapted hybrid, for 
the final report; Tooth-ASAM reached its highest Dice 
(0.975) on the public Vident-lab video set and its lowest 
value (0.909) on the group’s private 45-volume Tooth-
CBCT collection from Hangzhou Dental Hospital, giving 
a cross-source mean Dice of 0.942. (10) . Classical CNNs 
remain competitive: an Attention U-Net on 39 Sichuan-
University scans (27 / 3 / 9 split) reports Dice 0.963 (7); 
a multi-phase SegResNet trained on 57 / 13 volumes and 
tested on 10 external scans from Semmelweis University 
records Dice 0.965 ± 0.010 (8); and ensemble “3.5-D” U-
Nets lift Dice from 0.93 to 0.96 using four-fold cross-
validation on a 24-volume National Taiwan University 
cohort (9). The remaining paper, Xie 2024, evaluates 600 
optical-microscope images of cracked enamel (Sun Yat-
sen & Guangdong UT) and reports an improved FDB-
DeepLabv3+ with mIoU 0.7507 and MPA 0.7552; 
following the procedure stated in the Methods section, 
this corresponds to Dice ≈ 0.857 for comparability (20). 
For comparability across studies, pixel-wise F1 was 
treated as Dice (11). 

Only three segmentation papers provide a genuine 
external-site test set: the multi-structure Swin-UNETR 
study that added an independent 55-scan CBCT cohort 
from additional hospitals to its ten-centre training pool 
(6), the periodontal-bone SegResNet work evaluated on 
10 CBCT volumes acquired at Bern after training solely 
on Semmelweis data (8), and the MFPT-Net multi-task 
model whose implant masks and classifications were 
challenged with 252 CBCT scans collected at two clinics 
outside the Peking University training cohort (21). 

Split reporting is inconsistent: one large multi-centre 
CBCT project supplies total case numbers but omit 
detailed Train, Validation and Test allocation (6), while 
three others rely exclusively on k-fold cross-validation 
(9, 11, 18). Also, the Hadzic 2023 study trained its SCN 
+ 3-D U-Net via four-fold cross-validation, and the 
authors subsequently evaluated the frozen model on an 
independent 195-scan set from Graz (15). 

MFPT-Net simultaneously classifies implant brands 
and segments implant bodies on 3-D CBCT data drawn 
from Peking University and two collaborating clinics. 
Without disclosing its internal split, the network achieves 
F1 0.93 for multi-class implant recognition (5 categories) 
and Dice 0.98 for implant-body segmentation when 
tested on an independent set of 252 external implants (21; 
Table 3).
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Table 3. Included studies characteristics 

# 
Study year 

(Ref) 
Clinical 

application 
Image 
Type 

Data Source 
(Size) 

Train / Val / 
Test 

Model family Key overall metrics* 

Detection      

1 Bayati 2025 (3) Caries BW 
Tehran U; 1 506 
images (552 BW) 

1 205 / 151 / 150 
(80 / 10 / 10 %) 

YOLOv8 
P 0.8483 · R 0.7977 · 

F1 0.8222 

2 Lee 2024 (4) 
Peri-

implantitis 
PA Taipei MU (800) 600 / 100 / 100 YOLOv7 

P 1.0000 · R 0.9444 · 
F1 0.9710 

3 Liu 2024 (17) 
Periapical-

lesion 
PA 

Nanjing Stom. 
Hosp. (1 305) + 

Jiangsu 2nd Hosp. 
(200 ext) 

 

1 044 / 261 / 200 
ext 

YoCNET 
(YOLOv5 + 
ConvNeXt) 

P 0.9888 · R 0.8530 · 
F1 0.9159 

4 Hadzic 2023 (15) 
Periapical-

lesion 
CBCT Med U. Graz (195) 

4-fold CV 144 / 
NR / 36 
 195 ext 

U-Net CNN 
Sp 0.843 · R 0.867 Acc 

0.895, 
 F1est≈0.53 Pest≈0.38 

5 Kunt 2023 (16) Caries BW 
Prague multi-
device (3 989) 

2 793 / 598 / 598 CNN ensemble 
P 0.83 · R 0.77 · F1 

0.80 

6 Ayhan 2025 (5) Caries BW 
Kırıkkale U. 

(2 150) 
2 000 train + val  

/ 150 test 
YOLOv9c 

P 0.651 · R 0.727 · F1 
0.687 

7 Ryu 2023 (18) Bone-loss PR Pusan U. (4 083) 5-fold CV (4 083) Faster R-CNN 
P 0.90 · R 0.90 · F1 

0.90 (AUC 0.95) 

8 Adnan 2024 (14) Caries RGB 
Aga Khan U. 

(7 465) 
5 226 / 1 493 / 

746 
YOLOv5s 

P 0.907 · R 0.856 · F1 
0.880 

9 
Vinayahalingam 

2022  (19) 
Mandibular-

fracture 
PR 

Charité Berlin – 6 
404 PR (1 624 fx + 

4 780 non-fx) 

1 310 / 165 / 149 
(+ matched 

controls) 

Faster R-CNN + 
Swin-T 

P 0.977 · R 0.960 · F1 
0.947 

Segmentation      

10 Liu 2024 (6) Multi-structure CBCT 
10 Chinese centres 
— 451 scans + 55 

external scans 

NR / NR / NR 
(+55 ext) 

Swin-UNETR 
Dice 0.965 (tooth) 

0.936 (sinus) ·0.954 
(bone) ·0.948 (canal) 

11 Chen 2025 (7) Tooth CBCT Sichuan U. (39) 
27 / 3 / 9 cases 
(800 / 71 / 275 

ROIs) 
Attention U-Net Dice 0.9633 

12 Wang 2025 (10) Tooth 
CBCT + PR 

+ RGB 

NC-CBCT release 
(4 938) 

Tooth-CBCT — 
Hangzhou Dental 

Hosp. 
(45 vols) 

MICCAI-Tooth PR 
(2 000 + 500) 

Vident lab video 
(409) 

NC 17 361 / 1 
840 / 1 840 

patches 
Tooth 5 900 / 

720 / 720 
patches 

MICCAI PR 1 
600 / 200 / 200 

imgs 
Video 300 / 29 / 

80 vids 

SAM derivative 
– ToothASAM 

Dice range 0.909 – 
0.975 (Avg 0.9418) 

13 
Palkovics 2025 

(8) 
Periodontal-

bone 
CBCT 

Semmelweis U. 
(80) 

57 / 13 / 10 ext 
Multi-phase 
SegResNet 

Dice 0.9650 ± 0.0097 

14 Hsu 2022 (9) Tooth CBCT 
NTU tri-centre 

(102) 
4-fold CV 3.5-D U-Net Dice 0.911 

15 
Schneider 2025 

(11) 

Tooth / Tooth-
structure / 

Caries 
PR + BW 

Charité 
(1881 PR 1625 BW 

2689 BW) 
5-fold CV 

U-Net / 
DeepLabV3+ 

Tooth F1† 0.89 · 
Structure F1 0.85 · 

Caries F1 0.49 

16 Xie 2024 (20) Crack 
Optical 

microscope 

Sun Yat sen & 
Guangdong UT 

600 
500 / — / 100 

FDB-
DeepLabv3+ 

mIoU 0.7507  MPA 
0.7552 

Diceest≈0.857 
Segmentation  
Classification 

     

17 Zhao 2025 (21) Implant CBCT 
Peking U + 2 

clinics (437) + 252 
ext 

NR / NR /NR 
 252 ext 

MFPT-Net (3-D 
CNN multitask) 

Classification: P 93.15 
% · R 93.31 % · F1 

93.18 % │ 
Segmentation: Dice 

0.9804 

 
† Pixel-wise F1 reported; treated as Dice * P = precision, R = recall, F1 = F1-score, Sp = specificity, Acc = accuracy; Dice = Dice similarity coefficient; 
AUC = area under ROC curve; mIoU = mean Intersection-over-Union; MPA = mean pixel accuracy, MFPT-Net = Multi-task Fine-Grained 
Progressive Training Network. PR = Panoramic Radiograph, BW = Bitewing, CV = Cross Validation, est = Estimate, ext = Extrnal, NR = Not 
Reported 
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Table 4 pools the headline metrics for all 23 task–
dataset pairs using simple, un-weighted averages, 
because four studies do not disclose the size of their 
independent test sets. We report unweighted means to 

avoid over-representing single-site large datasets; 
weighted estimates are not directly comparable across 
heterogeneous tasks.

 
Table 4.  Pooled performance by task 

Task category Metric (mean ± SD) Range Number of studies 

Caries detection (bitewing / photo) F1 = 0.80 ± 0.07 0.69 – 0.88 4 (3, 5, 14, 16) 
Peri-implantitis detection F1 = 0.97 — 1 (4) 
Periapical-lesion detection (2-D radiograph) F1 = 0.92 — 1 (17) 
Periapical-lesion detection (CBCT) F1 ≈ 0.53 † — 1 (15) 
Periodontal bone-loss grading F1 = 0.90 — 1 (18) 
Mandibular-fracture detection F1 = 0.95 — 1 (19) 
Implant-brand classification F1 = 0.93 — 1 (21) 
Detection / classification* F1 = 0.84 ± 0.14 0.53 – 0.97 10 
Tooth segmentation (CBCT) Dice = 0.95 ± 0.02 0.91 – 0.97 4 (6, 7, 9, 10)‡ 
Periodontal-bone segmentation Dice = 0.97 — 1 (8) 
Implant-body segmentation Dice = 0.98 — 1 (21) 
Sinus segmentation Dice = 0.936 — 1 (6) 
Bone segmentation Dice = 0.954 — 1 (6) 
Canal segmentation Dice = 0.948 — 1 (6) 
Tooth segmentation (PR) § Dice = 0.89 — 1 (11) 
Enamel-crack segmentation* Dice ≈ 0.857 — 1 (20) 
Tooth-structure segmentation § Dice = 0.85 — 1 (11) 
Caries segmentation § Dice = 0.49 — 1 (11) 
Segmentation* Dice = 0.89 ± 0.13 0.49 – 0.98 13 

 
* Dice for Xie 2024(20) estimated from mIoU = 0.7507 using the conversion described in the Methods section. ‡ Wang 2025 (10) reports multi-
source Tooth-ASAM with per-source Dice; for the Tooth-CBCT subset the Dice is 0.909 (lowest of its sources). † Hadzić 2023 (15)did not 
publish precision or F1. Using the confusion-matrix counts provided, we calculated precision ≈ 0.38 and F1 ≈ 0.53, which is included here 
and in the pooled mean. * Pooled rows use simple, unweighted averages over task–dataset pairs. § Schneider 2025 (11) reports pixel-wise 
F1 (5-fold CV); for segmentation this is equivalent to Dice, so we list Dice = 0.89 (tooth), 0.85 (tooth-structure), 0.49 (caries). 

 
Among the ten detection/classification papers the 

overall mean is F1 = 0.84 ± 0.14 (0.53 – 0.97). The peri-
implantitis YOLOv7 detector evaluated on 800 
periapicals from Taipei Medical University reports the 
highest F1 of 0.97 (4), whereas the CBCT periapical-
lesion study from Graz/Bern yields the lowest 
performance; precision derived from its published 
confusion matrix gives F1 ≈ 0.53 (15). Caries detection is 
the most frequently explored sub-task, appearing in four 
datasets (3, 5, 14, 16) with a pooled F1 = 0.80 ± 0.07. 
Single-dataset categories reach F1 = 0.92 for 2-D 
periapical lesions (17), 0.90 for periodontal bone-loss 
grading (18), 0.95 for mandibular-fracture detection (19) 
and 0.93 for five-class implant-brand recognition (21). 

Segmentation (all modalities) yields a pooled Dice = 
0.89 ± 0.13 (0.49 – 0.98) across 13 task–dataset pairs 
(Table 4). For CBCT-only pairs, four independent tooth-
only CBCT series (6, 7, 9, 10) cluster tightly at Dice = 
0.95 ± 0.02 (0.91 – 0.97). Multi-structure Swin-UNETR 
reports Dice 0.936–0.965 for tooth, sinus, bone and canal 
across 451 CBCT volumes (6); periodontal-bone 
SegResNet achieves Dice = 0.97 (8), and implant-body 
MFPT-Net tops the group at Dice = 0.98 (21). The non-
CBCT outlier is enamel-crack segmentation on 600 
optical-microscope images, where Dice was estimated at 
≈ 0.857 from the reported mIoU 0.7507 to permit 
comparison (20). 

Inference speed reporting was largely absent. Only one 

primary study (Adnan 2024’s smartphone caries 
prototype) published a numeric runtime, quoting ~14 
frames per second (fps) (≈ 71 ms per frame) on a mobile 
system-on-chip (SoC) (14). Both papers invoke the 
YOLO family’s reputation for real-time inference, citing 
the single-shot, one-stage design that characterises 
YOLOv7 and YOLOv8, but neither paper backs the 
“real-time” claim with concrete runtime data such as FPS 
or per-image latency (3, 4). Similarly, the benchmarking 
work by Ayhan 2025 (YOLOv9c) and Schneider 2025 
(Vision-Transformer vs CNN) compared architectures 
qualitatively yet omitted hardware-specific timings (5, 
11). None of the CBCT segmentation papers recorded 
inference throughput. 

Across the 17 included studies, detector performance 
varied by model family and dataset. YOLO variants 
spanned F1 0.687–0.971 (lowest in a v9c caries model (5); 
highest in peri-implantitis with v7 (4)), with mid-range 
results on bite-wing caries (3) and intra-oral photos (14). 
The same study reports AUC ≈ 0.78 while achieving F1 ≈ 
0.88; differences reflect metric choice and class balance 
(14). The hybrid YoCNET (YOLOv5+ConvNeXt) 
achieved the highest reported precision (P = 0.9888) with 
lower recall (R = 0.8530) (17). Faster R-CNN pipelines 
were strong on panoramics (F1=0.90 (18) and 0.947 with a 
Swin-T backbone (19)), though evaluated via cross-
validation or matched controls (18, 19). Only two detection 
works used genuine external tests: a CBCT periapical-
lesion study (195 scans) reporting Sp = 0.843, R = 0.867, 
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Acc = 0.895 with low F1≈0.53 and P≈0.38 (derived from 
the published confusion matrix) (15), and YoCNET on 200 
external periapical images). Across all detectors, the lowest 
F1 was Hadzić 2023 (≈0.53) (15). For segmentation, U-Net 
derivatives reported high Dice (≈0.91–0.963) (7, 9) and 
SegResNet reached Dice = 0.965 ± 0.010 (8); Swin-
UNETR achieved Dice 0.936–0.965 across 
tooth/sinus/bone/canal with a 55-scan external set (6), and 
a SAM-based model (Tooth-ASAM) reached Dice 0.909–
0.975 (mean 0.9418) across mixed sources (10). 
DeepLabV3+ performed well for tooth/structure (Dice 
0.89/0.85) but was weaker for caries (Dice 0.49) (11), while 

a multitask 3-D MFPT-Net showed strong external 
performance (classification F1≈93 % and segmentation 
Dice≈0.98 on 252 CBCT scans) (21). Split reporting was 
heterogeneous, NR counts and k-fold CV were common, 
limiting cross-study comparability (6, 9, 11, 18). Top 
performers: YOLOv7 delivered the highest single-site 
detector score (F1 = 0.971) (4); YoCNET offered the 
highest precision and is one of the only externally tested 
detectors (17); for segmentation, MFPT-Net led on external 
data (21), with SegResNet (8) and Swin-UNETR (6) the 
strongest non-implant CBCT results, and Tooth-ASAM the 
highest within-source Dice range (10; Table 5).

 

Table 5. Comparative performance of major model families 

Model family Studies (Ref) Task / Modality 
Highest Reported key 

metrics (as given) 
Strengths observed 

in this dataset 

Weaknesses 
observed in this 

dataset 

YOLO 
(v5/v7/v8/v9c) 

Bayati 2025 (3); 
Lee 2024 (4); 

Ayhan 2025 (5); 
Adnan 2024 (14) 

Detection (BW, 
PA, intra-oral 

RGB) 

F1 0.687–0.971 
(3) P 0.8483 · R 0.7977 · F1 

0.8222 
(4) P 1.000 · R 0.944 · F1 

0.971 
(14) P 0.907 · R 0.856 · F1 

0.880 

Highest single-site 
detector (YOLOv7 F1 
0.971) (4); solid mid-

range on BW and 
RGB (3, 14) 

Lowest YOLO F1 
at 0.687 (v9c 

caries) (5); no 
external-site 
evaluation 
reported 

Faster R-CNN Ryu 2023 (18) Detection (PR) 
P 0.90 · R 0.90 · F1 0.90 · 

AUC 0.95 

Balanced 
precision/recall on 

panoramics 

Reported via 5-
fold CV only 

Faster R-CNN + 
Swin-T 

Vinayahalingam 
2022 (19) 

Detection (PR) P 0.977 · R 0.960 · F1 0.947 
High F1 on 

mandibular fractures 

Matched-control 
testing; no stated 

external site 

Hybrid YoCNET 
(YOLOv5 + 
ConvNeXt) 

Liu 2024 (17) Detection (PA) 
P 0.9888 · R 0.8530 · F1 

0.9159 

Highest detector 
precision and 

external test of 200 
images 

Precision–recall 
gap (R 0.8530) 

CNN ensemble Kunt 2023 (16) Detection (BW) P 0.83 · R 0.77 · F1 0.80 
Reasonable multi-

device BW 
performance 

Lower F1 than top 
detectors; no 
external site 

U-Net (detection, 
CBCT periapical) 

Hadzić 2023 (15) 
Detection 
(CBCT) 

Sp 0.843 · R 0.867 · Acc 
0.895; F1 ≈ 0.53; P ≈ 0.38 

Includes 195-scan 
external test 

Lowest detector F1 
and precision in 

set 
U-Net variants 
(Attention / 3.5-
D) 

Chen 2025 (7); 
Hsu 2022 (9) 

Segmentation 
(CBCT tooth) 

Dice 0.9633 (7); 0.911 (9) 
High Dice on internal 

cohorts 
Small/CV splits; 
no external site 

Swin-UNETR Liu 2024 (6) 
Segmentation 
(CBCT, multi-

structure) 

Dice 0.936–0.965 
(tooth/sinus/bone/canal) 

Strong multi-
structure Dice; 55-
scan external set 

Train/val/test 
counts NR 

SegResNet 
(multi-phase) 

Palkovics 2025 
(8) 

Segmentation 
(CBCT 

periodontal 
bone) 

Dice 0.9650 ± 0.0097 
High Dice; 10 
external scans 

External n is small 

DeepLabV3+ / 
FDB-
DeepLabV3+ 

Schneider 
2025(11); Xie 

2024 (20) 

Segmentation 
(PR/BW; optical 

microscope) 

(11) Tooth Dice 0.89; 
Structure Dice 0.85; Caries 

Dice 0.49. 
(20) mIoU 0.7507 · MPA 

0.7552 (Dice ≈ 0.85) 

Effective for 
tooth/structure 

masks (11) 

Caries 
segmentation 

weaker (Dice 0.49) 
(11)  

no external site 
stated (11, 20) 

SAM-derivative 
(Tooth-ASAM) 

Wang 2025 (10) 
Segmentation 
(CBCT + PR + 

RGB video) 

Dice 0.909–0.975 (mean 
0.9418) 

Highest within-
source Dice range 

across mixed sources 

Lower Dice on 
private Tooth-
CBCT subset 

(0.909) 

MFPT-Net (3-D 
multitask) 

Zhao 2025 (21) 
Classification + 
Segmentation 

(CBCT implants) 

Cls F1 93.18 % · Seg Dice 
0.9804 

Strongest external-set 
segmentation; 

multitask 
performance 

Internal split NR 
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4. Discussion 

Deep-learning performance in the 17 primary studies is 
already strong enough to influence day-to-day dentistry, 
yet the way results are reported still lags behind their raw 
accuracy. 
Our pooled analysis shows that detection only papers 
(excluding the implant-brand classifier; n = 9) reach a 
broad F1 band of 0.53 – 0.97 —the lower bound reflects 
the CBCT periapical-lesion detector in Hadzić 2023 with 
F1 ≈ 0.53 derived from its published confusion matrix 
(15); with YOLOv7 on peri-implantitis periapicals 
setting the high-water mark (F1 0.97; P 1.00; R 0.94) (4) 
and a speed-optimised YOLOv9c anchoring the lower 
end among YOLO variants (F1 0.69) (5). After metric 
harmonization, segmentation results across all modalities 
(n = 13 task–dataset pairs) yield Dice 0.89 ± 0.13 (range 
0.49–0.98). CBCT-only tooth segmentation remains 
tighter at Dice 0.95 ± 0.02 (0.91–0.97), with the SAM-
derived Tooth-ASAM topping out at Dice 0.975 (10); 
even the smallest CBCT dataset, a 3.5-D U-Net 
ensemble, clears Dice 0.91 (9). Harmonization steps 
included treating pixel-wise F1 as Dice (Schneider 2025 
(11)) and converting mIoU to Dice for cracks (Xie 2024: 
mIoU 0.7507 → Dice ≈ 0.857) (20). One multitask 
network bridges the two worlds, pairing implant-brand 
classification (F1 0.93) with implant-body segmentation 
at Dice 0.98 (21). These figures confirm that transformer-
enhanced U-Nets, SegResNets and SAM adaptations 
have converged on near-surgical CBCT overlap 
accuracy, whereas detector performance remains 
modality-sensitive—excellent on peri-implantitis 
hotspots but weaker on low-contrast enamel lesions. 

Tooth segmentation on panoramic radiographs (PR) 
reaches Dice ≈ 0.89 (11), whereas CBCT tooth 
segmentation spans 0.909–0.965 across four independent 
series (6, 7, 9, 10). On PR, tooth-structure masks are 
lower (Dice ≈ 0.85) and caries segmentation is markedly 
weaker (Dice ≈ 0.49) (11). In multi-structure CBCT, 
component Dice are consistently high (tooth 0.965; sinus 
0.936; bone 0.954; canal 0.948) (6). These modality-
linked gaps likely reflect inherent contrast/resolution 
advantages of CBCT, 3-D context, and differences in 
annotation granularity.  

On panoramic radiographs, reported sensitivity varies 
widely due to head-position variability, magnification 
and distortion; single-site reports can be high, whereas 
multi-site settings are lower. For intra-oral/smartphone 
photographs, the included study reports AUC ≈ 0.78 
alongside overall F1 ≈ 0.88 (14), underscoring 
illumination/focus shifts and device heterogeneity. To 
mitigate these gaps, domain adaptation merits systematic 
evaluation—e.g., appearance/style transfer (CycleGAN-
style unpaired translation), histogram or color 
normalization, and adversarial feature-level alignment; 
test-time adaptation and multi-source aggregation (as in 
Tooth-ASAM across NC-CBCT, Tooth-CBCT, PR and 
video (10)) are also promising. Future work should report 
cross-domain performance deltas (internal to external) 

and ablate adaptation components to quantify their 
contribution. 

Preliminary reader studies suggest that, in specific 
cohorts and structures, high volumetric Dice (≈0.94–
0.95) may be judged acceptable for planning; however, 
acceptability is task-, structure-, and surface-error–
dependent and no field-wide thresholds exist (22, 23).We 
therefore refrain from adopting a numeric cut-off. 

Across the corpus, performance closely tracked dataset 
composition. Higher scores were observed on 
homogeneous, single-site cohorts with consistent 
acquisition (e.g., CBCT tooth segmentation at Dice 0.91–
0.97), whereas more heterogeneous or low-contrast tasks 
(e.g., PR caries masks at Dice ≈ 0.49) lagged (6, 7, 9-11). 
Annotation protocol (single rater vs. consensus), 
prevalence and case mix, and split design (external test 
vs. k-fold CV) all influenced headline figures (6, 8, 9, 11, 
18, 21) . Multi-source aggregation improved robustness: 
Wang 2025 combined NC-CBCT, Tooth-CBCT, PR and 
video and achieved within-source Dice up to 0.975, albeit 
with a lower result (0.909) on the private Tooth-CBCT 
subset. Durable public endpoints are essential for 
replication; at the time of writing, (10) the NC-CBCT link 
cited in (10) was inaccessible during manuscript 
preparation; mirroring on durable repositories would aid 
reproducibility. 

These advances in deep learning are beginning to 
reshape clinical workflows across diagnosis, treatment 
planning, and disease monitoring in dentistry. For 
diagnosis, second-reader systems based on YOLOv8 
have demonstrated improved detection of enamel lesions 
on bitewing radiographs, achieving an F1 of 0.82, 
precision of 0.85, and recall of 0.80, thus reducing missed 
early caries cases (3). In treatment planning, high-
precision segmentation of single-tooth CBCT volumes—
with Dice scores ranging from 0.960 to 0.963—enables 
automated generation of implant surgical guides and 
clear aligner designs, reducing clinician workload and 
improving consistency (7, 9). For monitoring, 
convolutional neural networks trained on panoramic 
images can now grade periodontal bone loss with an AUC 
of 0.95 and an F1 of 0.90, supporting longitudinal 
surveillance of periodontal health with minimal manual 
input (19). 

Despite these encouraging developments, several key 
challenges remain before deep-learning systems can be 
fully integrated into clinical practice. Generalisation 
across sites and imaging conditions continues to be a 
concern, with performance typically dropping by an 
appreciable amount in metrics like Dice or F1 when 
models are evaluated on external datasets. For instance, a 
CBCT periapical-lesion detector evaluated on an 
independent cohort reported Acc = 0.895 with F1 ≈ 0.53 
derived from its confusion matrix (15); other studies 
report only internal or only external figures, limiting 
paired deltas (6, 8, 21). Explainability is another limiting 
factor; only a minority provide saliency/attention 
overlays or probability calibration (e.g., architecture 
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comparisons (11)). Embedding calibrated probabilities 
and case-level heatmaps directly in the viewer could 
improve interpretability and clinician acceptance. 

Beyond saliency/attention overlays, clinician trust 
depends on usable evidence. Small reader studies in 
medical imaging suggest that heatmaps and calibrated 
probabilities can improve decision confidence, but 
standardized validation in dentistry remains limited. We 
therefore recommend (i) reporting probability calibration 
(e.g., temperature scaling with expected calibration 
error), (ii) embedding case-level overlays directly in the 
radiology viewer, and (iii) conducting user-centred 
reader studies that measure time-to-decision, confidence 
shifts, and error types with and without explainability. 
These endpoints would connect technical metrics to 
clinical usability. 

Finally, the current body of work lacks prospective or 
randomized studies—none of the 17 reviewed papers 
meet these standards—leaving real-world impacts on 
diagnostic accuracy, clinical efficiency, or chair-time 
untested. 

While deep-learning models have reached high 
performance on bitewings and standard CBCT scans, key 
modality-specific gaps still limit broader clinical 
deployment. On panoramic radiographs, diagnostic 
sensitivity can be unstable—owing to head-position 
variability and geometric distortion—despite strong 
single-site results (19). For intra-oral photographs, only 
one included detector study reported performance (F1 ≈ 
0.88) (14), underscoring the need for broader external 
validation and domain-adaptation strategies for 
illumination and focus shifts. Micro-scale detection also 
remains under-developed: on optical-microscope 
enamel-crack images, the improved DeepLabv3+ 
reached mIoU = 0.7507 (≈ Dice 0.857) (20), and small-
fissure sensitivity remains limited by dataset size. 
Beyond the included set, soft-tissue classification will 
require curated, diverse photo atlases and external-site 
testing before routine use. Finally, CBCT scans 
containing heavy-metal restorations continue to degrade 
image quality and segmentation performance, and none 
of the included segmentation papers explicitly evaluated 
metal-artifact-reduction within the AI pipeline (6-11, 20, 
21). Targeted artifact-aware training remains an open 
need (13). To mitigate domain shift across modalities and 
scanners, multi-source aggregation (e.g., Wang 2025’s 
Tooth-ASAM across NC-CBCT, Tooth-CBCT, PR and 
video  (10)) and explicit domain-adaptation (e.g., 
style/appearance transfer or feature-level adaptation) 
merit systematic evaluation. Bridging these modality-
specific gaps will require large, multi-centre datasets; 
artifact-aware or domain-adaptive architectures; and 
rigorous, externally validated evaluations to ensure 
reliability in real-world conditions. Our review could not 
compute a cross-study latency average because only one 
primary paper (14) published a numeric runtime (~14 fps 
on a mobile SoC). Flagship YOLO papers describe their 
detectors as “real-time” but the articles themselves omit 
frames-per-second or millisecond figures. By contrast, 

the MLCommons MLPerf Inference benchmark obliges 
every submission to disclose batch-1 latency, hardware 
and software stack, and “Queries per Second” —making 
vendor claims directly comparable (24). A one-page 
“speed sheet” following the MLPerf template would let 
journals verify that a model advertised for chair-side use 
really meets the <100 ms latency widely accepted in 
human-computer-interaction studies. Authors should also 
report effective Tera Floating point operations per second 
(TFLOPS) (images s⁻¹ × model-FLOPs) so throughput 
scales with hardware generations can be normalised 
across clinics that own different GPUs. Half of the 
included papers do not state framework versions, 
CUDA/cuDNN libraries, augmentation pipelines or even 
the random-seed policy. Such omissions block byte-for-
byte replication and conceal latent implementation bugs 
that sometimes inflate headline metrics. At minimum, 
studies should publish inference scripts, weights and 
Docker files (or conda environments) listing exact 
package versions. The federated-learning work of 
Schneider 2023 (12) proves that privacy-preserving 
containers can be shared without moving raw patient 
data, so legal constraints are surmountable.  Bringing the 
strands together, six inter-locking actions would move 
dental-imaging AI from promising prototypes to 
reproducible, clinically dependable tools:  

1-Publish a speed-sheet in every paper. Authors should 
append a one-row table—mirroring the MLPerf 
template—listing batch-1 latency (ms), frames per 
second and effective TFLOPS on a named GPU, plus an 
edge-device figure whenever “chair-side” on a named 
GPU, including pre-/post-processing or “hand-held” use 
is claimed (24) (For clarity, we define “chair-side viable” 
as end-to-end batch-1 latency < 100 ms per image on 
named hardware, including pre/post-processing. 
Because, aside from one study on a mobile app (~14 fps), 
the included papers did not report model-specific latency 
or FPS, we treat “real-time” claims as unquantified and 
refrain from inferring < 100 ms). Transparent timing is 
essential; accuracy alone says nothing about workflow 
impact. 

2-Standardise core metrics. Report Dice (or volumetric 
Dice) for every segmentation task and F1 at IoU = 0.5 for 
every detection task; treat pixel-wise F1 as Dice and 
convert mIoU→Dice as specified in Methods; confusion 
matrices or ROC curves should appear in the supplements 
to reveal class imbalance (25). Harmonising on these two 
anchors prevents today’s scatter of pixel-F1, mIoU and 
specificity-only reports and lets investigators track real 
progress year-on-year.  

3-Create an open benchmark with automatic scoring. A 
de-identified, multi-centre repository of bitewings, 
panoramics and CBCT volumes should host dockerised 
submissions. The server would grade each container on 
accuracy (Dice/F1) and latency, publishing a public 
leaderboard analogous to Common Objects in Context 
(COCO) for detection or Machine Learning Performance 
(MLPerf ) for inference (24-26).  



  

 

 

 
  

Vafaeian S, et al. Recent Advances in Deep Learning for Dental Imaging (2022–2025): A Narrative Review. Journal of Dentomaxillofacial Radiology, Pathology and Surgery. 2025; 14(1): 12-22 

 

  

21 

4-Release full inference pipelines. Every study should 
provide Docker (or conda) images that fix framework 
versions, CUDA/cuDNN builds, augmentation 
parameters and random seeds. Such containers let 
independent groups reproduce results byte-for-byte and 
surface implementation bugs early; the federated-
learning work of Schneider 2023 shows this is feasible 
without moving raw data(12).  

5-Leverage federated learning and explainable AI. 
Multi-centre federated pipelines have already 
outperformed both local and centrally merged training 
while keeping data private(12). At inference time, 
saliency maps or attention overlays should be embedded 
directly into radiology viewers so clinicians can see why 
the network fired.  

6-Validate prospectively with hybrid architectures. 
Hybrid CNN–Transformer designs promise to pair 
YOLO-level speed with ViT-level context. Their real-
world impact on diagnostic yield, chair-time and cost 
now needs proof in multi-centre, prospective trials that 
use the standardised metrics and speed sheets outlined 
above.  

If the field adopts these practices, the high accuracies 
already demonstrated by YOLO detectors(3-5, 16), 
transformer-enhanced U-Nets (7-9)and SAM 
derivatives(10) can translate into dependable, vendor-
neutral systems that genuinely shorten chair-time and 
improve diagnostic care.  

5. Conclusions 

Between 2022 and 2025, dental-imaging AI moved 
from feasibility to credible pilot readiness. Detectors 
achieved high F1 on bitewings and periapicals, while 
CBCT segmenters consistently reached high Dice—
topping out near 0.98 on select tasks. Across all 
modalities, pooled segmentation performance was strong 
(≈ Dice 0.89 ± 0.13), and CBCT-only tooth segmentation 
was tighter (≈ 0.95 ± 0.02). Detection remained modality-
sensitive, varying with lesion salience and acquisition 
quality. 

We judge three model families as pilot-ready in their 
target niches: (i) YOLOv8 for chair-side caries detection 
on bitewings, (ii) Tooth-ASAM for CBCT tooth 
segmentation across mixed sources, and (iii) SegResNet 

for CBCT periodontal-bone mapping. 

Closing the evidence–deployment gap now depends less 
on raw accuracy and more on standards: 1. a one-row 
“speed sheet” (batch-1 latency, FPS, effective TFLOPS, 
named hardware), 2. metric harmonization (Dice for 
segmentation; F1@0.5 for detection; confusion 
matrices/ROC), 3. dockerized, version-locked inference 
pipelines, and 4. public multi-centre benchmarks that 
score both accuracy and latency. Adopting these practices 
will make progress measurable and reproducible; 
prospective, multi-centre trials can then determine the 
real-world impact on diagnostic yield, misses, and chair-
time. 
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